Two ideals connected with strong right upper porosity at a point
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 713-737
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\rm SP$ be the set of upper strongly porous at $0$ subsets of $\mathbb R^{+}$ and let $\hat I(\rm SP)$ be the intersection of maximal ideals $\boldsymbol {I}\subseteq \rm SP$. Some characteristic properties of sets $E\in \hat I(\rm SP)$ are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at $0$ subsets of $\mathbb R^{+}$ is a proper subideal of $\hat I(\rm SP).$ Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).
Let $\rm SP$ be the set of upper strongly porous at $0$ subsets of $\mathbb R^{+}$ and let $\hat I(\rm SP)$ be the intersection of maximal ideals $\boldsymbol {I}\subseteq \rm SP$. Some characteristic properties of sets $E\in \hat I(\rm SP)$ are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at $0$ subsets of $\mathbb R^{+}$ is a proper subideal of $\hat I(\rm SP).$ Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).
DOI : 10.1007/s10587-015-0204-3
Classification : 28A05, 28A10
Keywords: one-side porosity; local strong upper porosity; completely strongly porous set; ideal
@article{10_1007_s10587_015_0204_3,
     author = {Bilet, Viktoriia and Dovgoshey, Oleksiy and Prestin, J\"urgen},
     title = {Two ideals connected with strong right upper porosity at a point},
     journal = {Czechoslovak Mathematical Journal},
     pages = {713--737},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0204-3},
     mrnumber = {3407601},
     zbl = {06537688},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0204-3/}
}
TY  - JOUR
AU  - Bilet, Viktoriia
AU  - Dovgoshey, Oleksiy
AU  - Prestin, Jürgen
TI  - Two ideals connected with strong right upper porosity at a point
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 713
EP  - 737
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0204-3/
DO  - 10.1007/s10587-015-0204-3
LA  - en
ID  - 10_1007_s10587_015_0204_3
ER  - 
%0 Journal Article
%A Bilet, Viktoriia
%A Dovgoshey, Oleksiy
%A Prestin, Jürgen
%T Two ideals connected with strong right upper porosity at a point
%J Czechoslovak Mathematical Journal
%D 2015
%P 713-737
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0204-3/
%R 10.1007/s10587-015-0204-3
%G en
%F 10_1007_s10587_015_0204_3
Bilet, Viktoriia; Dovgoshey, Oleksiy; Prestin, Jürgen. Two ideals connected with strong right upper porosity at a point. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 713-737. doi: 10.1007/s10587-015-0204-3

[1] Bilet, V. V., Dovgoshey, O. A.: Investigations of strong right upper porosity at a point. Real Anal. Exch. 39 (2013/14), 175-206. | MR

[2] Chinčin, A.: Recherches sur la structure des fonctions mesurables. Russian, in French Moscou, Rec. Math. 31 (1923), 265-285, 377-433.

[3] Denjoy, A.: Leçons sur le calcul des coefficients d'une série trigonométrique. Tome II. Métrique et topologie d'ensembles parfaits et de fonctions. French Gauthier-Villars, Paris (1941). | Zbl

[4] Denjoy, A.: Sur une propriété de séries trigonométriques. French Amst. Ak. Versl. 29 (1920), 628-639.

[5] Dolženko, E. P.: Boundary properties of arbitrary functions. Math. USSR (1968), 1-12 translation from Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14 Russian. | MR

[6] Dovgoshey, O., Riihentaus, J.: Mean value type inequalities for quasinearly subharmonic functions. Glasg. Math. J. 55 (2013), 349-368. | DOI | MR | Zbl

[7] Foran, J., Humke, P. D.: Some set-theoretic properties of $\sigma$-porous sets. Real Anal. Exch. 6 (1980/81), 114-119. | DOI | MR

[8] Humke, P. D., Vessey, T.: Another note on $\sigma$-porous sets. Real Anal. Exch. 8 (1982/83), 262-271. | DOI | MR

[9] Karp, L., Kilpeläinen, T., Petrosyan, A., Shahgholian, H.: On the porosity of free boundaries in degenerate variational inequalities. J. Differ. Equations 164 (2000), 110-117. | DOI | MR | Zbl

[10] Kechris, A. S.: Hereditary properties of the class of closed sets of ubiqueness for trigonometric series. Isr. J. Math. 73 (1991), 189-198. | DOI | MR

[11] Kechris, A. S., Louveau, A., Woodin, W. H.: The structure of $\sigma$-ideals of compact sets. Trans. Am. Math. Soc. 301 (1987), 263-288. | MR | Zbl

[12] Przytycki, F., Rohde, S.: Porosity of Collet-Eckmann Julia sets. Fundam. Math. 155 (1998), 189-199. | MR | Zbl

[13] Repický, M.: Porous sets and additivity of Lebesgue measure. Real Anal. Exch. 15 (1989/90), 282-298. | DOI | MR

[14] Semenova, O. L., Florinskii, A. A.: Ideals of porous sets in the real line and in metrizable topological spaces. J. Math. Sci., New York 102 (2000), 4508-4522 translation from Probl. Mat. Anal. Russian 20 (2000), 221-242. | DOI | MR

[15] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics 1170 Springer, Berlin (1985). | DOI | MR | Zbl

[16] Tkadlec, J.: Constructions of some non-$\sigma$-porous sets on the real line. Real Anal. Exch. 9 (1983/84), 473-482. | DOI | MR

[17] Väisälä, J.: Porous sets and quasisymmetric maps. Trans. Am. Math. Soc. 299 (1987), 525-533. | DOI | MR | Zbl

[18] Zajíček, L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 2005 (2005), 509-534. | DOI | MR

[19] Zajíček, L.: Porosity and $\sigma$-porosity. Real Anal. Exch. 13 (1987/88), 314-350. | DOI | MR | Zbl

[20] Zajíček, L.: On cluster sets of arbitrary functions. Fundam. Math. 83 (1973/74), 197-217. | DOI | MR

[21] Zajíček, L., Zelený, M.: On the complexity of some $\sigma$-ideals of $\sigma$-$P$-porous sets. Commentat. Math. Univ. Carol. 44 (2003), 531-554. | MR | Zbl

[22] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72. | MR | Zbl

Cité par Sources :