Keywords: $k$-connected graph; non-regular graph; algebraic connectivity; Laplacian spectral radius; maximum degree
@article{10_1007_s10587_015_0203_4,
author = {Chen, Xiaodan and Hou, Yaoping},
title = {On the bounds of {Laplacian} eigenvalues of $k$-connected graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {701--712},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0203-4},
mrnumber = {3407600},
zbl = {06537687},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0203-4/}
}
TY - JOUR AU - Chen, Xiaodan AU - Hou, Yaoping TI - On the bounds of Laplacian eigenvalues of $k$-connected graphs JO - Czechoslovak Mathematical Journal PY - 2015 SP - 701 EP - 712 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0203-4/ DO - 10.1007/s10587-015-0203-4 LA - en ID - 10_1007_s10587_015_0203_4 ER -
%0 Journal Article %A Chen, Xiaodan %A Hou, Yaoping %T On the bounds of Laplacian eigenvalues of $k$-connected graphs %J Czechoslovak Mathematical Journal %D 2015 %P 701-712 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0203-4/ %R 10.1007/s10587-015-0203-4 %G en %F 10_1007_s10587_015_0203_4
Chen, Xiaodan; Hou, Yaoping. On the bounds of Laplacian eigenvalues of $k$-connected graphs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 701-712. doi: 10.1007/s10587-015-0203-4
[1] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75 Cambridge University Press, Cambridge (2010). | MR | Zbl
[2] Abreu, N. M. M. de: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423 (2007), 53-73. | DOI | MR | Zbl
[3] Diestel, R.: Graph Theory. Graduate Texts in Mathematics 173 Springer, Berlin (2010). | MR | Zbl
[4] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | MR | Zbl
[5] Kirkland, S. J., Molitierno, J. J., Neumann, M., Shader, B. L.: On graphs with equal algebraic and vertex connectivity. Linear Algebra Appl. 341 (2002), 45-56. | MR | Zbl
[6] Li, J., Shiu, W. C., Chang, A.: The Laplacian spectral radius of graphs. Czech. Math. J. 60 (2010), 835-847. | DOI | MR | Zbl
[7] Lu, M., Zhang, L.-Z., Tian, F.: Lower bounds of the Laplacian spectrum of graphs based on diameter. Linear Algebra Appl. 420 (2007), 400-406. | MR | Zbl
[8] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[9] Mohar, B.: Eigenvalues, diameter, and mean distance in graphs. Graphs Comb. 7 (1991), 53-64. | DOI | MR | Zbl
[10] Ning, W., Li, H., Lu, M.: On the signless Laplacian spectral radius of irregular graphs. Linear Algebra Appl. 438 (2013), 2280-2288. | DOI | MR | Zbl
[11] Shi, L.: Bounds on the ({L}aplacian) spectral radius of graphs. Linear Algebra Appl. 422 (2007), 755-770. | DOI | MR | Zbl
[12] Zhang, X.-D., Luo, R.: The spectral radius of triangle-free graphs. Australas. J. Comb. (electronic only) 26 (2002), 33-39. | MR | Zbl
Cité par Sources :