On the bounds of Laplacian eigenvalues of $k$-connected graphs
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 701-712
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mu _{n-1}(G)$ be the algebraic connectivity, and let $\mu _{1}(G)$ be the Laplacian spectral radius of a $k$-connected graph $G$ with $n$ vertices and $m$ edges. In this paper, we prove that \begin {equation*} \mu _{n-1}(G)\geq \frac {2nk^2}{(n(n-1)-2m)(n+k-2)+2k^2}, \end {equation*} with equality if and only if $G$ is the complete graph $K_n$ or $K_{n}-e$. Moreover, if $G$ is non-regular, then \begin {equation*} \mu _1(G)2\Delta -\frac {2(n\Delta -2m)k^2}{2(n\Delta -2m)(n^2-2n+2k)+nk^2}, \end {equation*} where $\Delta $ stands for the maximum degree of $G$. Remark that in some cases, these two inequalities improve some previously known results.
DOI :
10.1007/s10587-015-0203-4
Classification :
05C50, 15A18
Keywords: $k$-connected graph; non-regular graph; algebraic connectivity; Laplacian spectral radius; maximum degree
Keywords: $k$-connected graph; non-regular graph; algebraic connectivity; Laplacian spectral radius; maximum degree
@article{10_1007_s10587_015_0203_4,
author = {Chen, Xiaodan and Hou, Yaoping},
title = {On the bounds of {Laplacian} eigenvalues of $k$-connected graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {701--712},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {2015},
doi = {10.1007/s10587-015-0203-4},
mrnumber = {3407600},
zbl = {06537687},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0203-4/}
}
TY - JOUR AU - Chen, Xiaodan AU - Hou, Yaoping TI - On the bounds of Laplacian eigenvalues of $k$-connected graphs JO - Czechoslovak Mathematical Journal PY - 2015 SP - 701 EP - 712 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0203-4/ DO - 10.1007/s10587-015-0203-4 LA - en ID - 10_1007_s10587_015_0203_4 ER -
%0 Journal Article %A Chen, Xiaodan %A Hou, Yaoping %T On the bounds of Laplacian eigenvalues of $k$-connected graphs %J Czechoslovak Mathematical Journal %D 2015 %P 701-712 %V 65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0203-4/ %R 10.1007/s10587-015-0203-4 %G en %F 10_1007_s10587_015_0203_4
Chen, Xiaodan; Hou, Yaoping. On the bounds of Laplacian eigenvalues of $k$-connected graphs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 701-712. doi: 10.1007/s10587-015-0203-4
Cité par Sources :