Keywords: geodesic; shell of a curve; affine connection; (pseudo-)Riemannian metric; projective equivalence
@article{10_1007_s10587_015_0202_5,
author = {Mike\v{s}, Josef and Strambach, Karl},
title = {Shells of monotone curves},
journal = {Czechoslovak Mathematical Journal},
pages = {677--699},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0202-5},
mrnumber = {3407599},
zbl = {06537686},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0202-5/}
}
TY - JOUR AU - Mikeš, Josef AU - Strambach, Karl TI - Shells of monotone curves JO - Czechoslovak Mathematical Journal PY - 2015 SP - 677 EP - 699 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0202-5/ DO - 10.1007/s10587-015-0202-5 LA - en ID - 10_1007_s10587_015_0202_5 ER -
Mikeš, Josef; Strambach, Karl. Shells of monotone curves. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 677-699. doi: 10.1007/s10587-015-0202-5
[1] Betten, D.: Topological shift spaces. Adv. Geom. 5 (2005), 107-118. | DOI | MR | Zbl
[2] Betten, D.: Some classes of topological 3-spaces. German Result. Math. 12 (1987), 37-61. | MR | Zbl
[3] Cartan, E.: Les espaces riemanniens symétriques. French Verh. Internat. Math.-Kongr. 1 (1932), 152-161. | Zbl
[4] Eisenhart, L. P.: Non-Riemannian geometry. American Mathematical Society Colloquium Publications 8 American Mathematical Society, Providence (1990). | MR
[5] Gerlich, G.: Topological affine planes with affine connections. Adv. Geom. 5 (2005), 265-278. | DOI | MR | Zbl
[6] Gerlich, G.: Stable projective planes with Riemannian metrics. Arch. Math. 79 (2002), 317-320. | DOI | MR | Zbl
[7] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl spaces. Proc. 8th Int. Conf. on Appl. Math (APLIMAT 2009) Bratislava 423-430.
[8] Irving, R. S.: Integers, Polynomials, and Rings. A Course in Algebra. Undergraduate Texts in Mathematics Springer, New York (2004). | MR | Zbl
[9] Kagan, V. F.: Subprojective Spaces. Russian Bibliothek der Russischen Wissenschaften Mathematik, Mechanik, Physik, Astronomie Staatsverlag für Physikalisch-Mathematische Literatur, Moskva (1961). | MR
[10] Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. 1. Gewöhnliche Differentialgleichungen. German Akademische Verlagsgesellschaft, Leipzig (1942). | Zbl
[11] Kamke, E.: Differentialgleichungen Reeller Funktionen. Akademische Verlagsgesellschaft, Leipzig (1930), German.
[12] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311-333. | DOI | MR
[13] Mikeš, J., Strambach, K.: Grünwald shift spaces. Publ. Math. 83 (2013), 85-96. | MR | Zbl
[14] Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries. Result. Math. 53 (2009), 153-172. | DOI | MR
[15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science, Olomouc (2009). | MR | Zbl
[16] Norden, A. P.: Spaces with Affine Connection. Russian Nauka Moskva (1976). | MR | Zbl
[17] Petrov, A. Z.: New Methods in the General Theory of Relativity. Russian Hauptredaktion für Physikalisch-Mathematische Literatur Nauka, Moskva (1966). | MR
[18] Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. With an Introduction to Octonion Geometry. De Gruyter Expositions in Mathematics 21 De Gruyter, Berlin (1995). | MR
[19] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Russian Nauka Moskva (1979). | MR | Zbl
[20] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies 32 Princeton University Press 9, Princeton (1953). | MR | Zbl
Cité par Sources :