Shells of monotone curves
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 677-699
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We determine in $\mathbb {R}^n$ the form of curves $C$ corresponding to strictly monotone functions as well as the components of affine connections $\nabla $ for which any image of $C$ under a compact-free group $\Omega $ of affinities containing the translation group is a geodesic with respect to $\nabla $. Special attention is paid to the case that $\Omega $ contains many dilatations or that $C$ is a curve in $\mathbb {R}^3$. If $C$ is a curve in $\mathbb {R}^3$ and $\Omega $ is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when $\nabla $ yields a flat or metrizable space and compute the corresponding metric tensor.
DOI :
10.1007/s10587-015-0202-5
Classification :
51H20, 53B05, 53B20, 53B30, 53C22
Keywords: geodesic; shell of a curve; affine connection; (pseudo-)Riemannian metric; projective equivalence
Keywords: geodesic; shell of a curve; affine connection; (pseudo-)Riemannian metric; projective equivalence
@article{10_1007_s10587_015_0202_5,
author = {Mike\v{s}, Josef and Strambach, Karl},
title = {Shells of monotone curves},
journal = {Czechoslovak Mathematical Journal},
pages = {677--699},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {2015},
doi = {10.1007/s10587-015-0202-5},
mrnumber = {3407599},
zbl = {06537686},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0202-5/}
}
TY - JOUR AU - Mikeš, Josef AU - Strambach, Karl TI - Shells of monotone curves JO - Czechoslovak Mathematical Journal PY - 2015 SP - 677 EP - 699 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0202-5/ DO - 10.1007/s10587-015-0202-5 LA - en ID - 10_1007_s10587_015_0202_5 ER -
Mikeš, Josef; Strambach, Karl. Shells of monotone curves. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 677-699. doi: 10.1007/s10587-015-0202-5
Cité par Sources :