Baire classes of complex $L_1$-preduals
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 659-676
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a complex \mbox {$L_1$-predual}, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ of the extreme points of the dual unit ball $B_{X^*}$ to the whole unit ball $B_{X^*}$. As a corollary we show that, given $\alpha \in [1,\omega _1)$, the intrinsic \mbox {$\alpha $-th} Baire class of $X$ can be identified with the space of bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ when $\mathop {\rm ext} B_{X^*}$ satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors' paper: Baire classes of non-separable $L_1$-preduals (2015). As such it generalizes former work of Lindenstrauss and Wulbert (1969), Jellett (1985), and ourselves (2014), (2015).
Let $X$ be a complex \mbox {$L_1$-predual}, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ of the extreme points of the dual unit ball $B_{X^*}$ to the whole unit ball $B_{X^*}$. As a corollary we show that, given $\alpha \in [1,\omega _1)$, the intrinsic \mbox {$\alpha $-th} Baire class of $X$ can be identified with the space of bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ when $\mathop {\rm ext} B_{X^*}$ satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors' paper: Baire classes of non-separable $L_1$-preduals (2015). As such it generalizes former work of Lindenstrauss and Wulbert (1969), Jellett (1985), and ourselves (2014), (2015).
DOI : 10.1007/s10587-015-0201-6
Classification : 26A21, 46B20, 46B25
Keywords: complex $L_1$-predual; extreme point; Baire function
@article{10_1007_s10587_015_0201_6,
     author = {Ludv{\'\i}k, Pavel and Spurn\'y, Ji\v{r}{\'\i}},
     title = {Baire classes of complex $L_1$-preduals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {659--676},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0201-6},
     mrnumber = {3407598},
     zbl = {06537685},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0201-6/}
}
TY  - JOUR
AU  - Ludvík, Pavel
AU  - Spurný, Jiří
TI  - Baire classes of complex $L_1$-preduals
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 659
EP  - 676
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0201-6/
DO  - 10.1007/s10587-015-0201-6
LA  - en
ID  - 10_1007_s10587_015_0201_6
ER  - 
%0 Journal Article
%A Ludvík, Pavel
%A Spurný, Jiří
%T Baire classes of complex $L_1$-preduals
%J Czechoslovak Mathematical Journal
%D 2015
%P 659-676
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0201-6/
%R 10.1007/s10587-015-0201-6
%G en
%F 10_1007_s10587_015_0201_6
Ludvík, Pavel; Spurný, Jiří. Baire classes of complex $L_1$-preduals. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 659-676. doi: 10.1007/s10587-015-0201-6

[1] Alfsen, E. M.: Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete 57 Springer, New York (1971). | MR | Zbl

[2] Argyros, S. A., Godefroy, G., Rosenthal, H. P.: Descriptive set theory and Banach spaces. Handbook of the Geometry of Banach Spaces, Vol. 2 W. B. Johnson et al. North-Holland Amsterdam (2003), 1007-1069. | DOI | MR | Zbl

[3] Effros, E. G.: On a class of complex Banach spaces. Ill. J. Math. 18 (1974), 48-59. | DOI | MR | Zbl

[4] Ellis, A. J., Rao, T. S. S. R. K., Roy, A. K., Uttersrud, U.: Facial characterizations of complex Lindenstrauss spaces. Trans. Am. Math. Soc. 268 (1981), 173-186. | DOI | MR | Zbl

[5] Holický, P., Kalenda, O.: Descriptive properties of spaces of measures. Bull. Pol. Acad. Sci., Math. 47 (1999), 37-51. | MR | Zbl

[6] Hustad, O.: Intersection properties of balls in complex Banach spaces whose duals are {$L_1$} spaces. Acta Math. 132 (1974), 283-313. | DOI | MR | Zbl

[7] Jellett, F.: On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex. Q. J. Math., Oxf. II. Ser. 36 (1985), 71-73. | DOI | MR | Zbl

[8] Kuratowski, K.: Topology. Vol. I. New edition, revised and augmented Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw (1966). | MR | Zbl

[9] Lacey, H. E.: The Isometric Theory of Classical Banach Spaces. Die Grundlehren der mathematischen Wissenschaften 208 Springer, New York (1974). | MR | Zbl

[10] Lazar, A. J.: The unit ball in conjugate $L_1$ spaces. Duke Math. J. 39 (1972), 1-8. | DOI | MR

[11] Lima, A.: Complex Banach spaces whose duals are $L_1$-spaces. Isr. J. Math. 24 (1976), 59-72. | DOI | MR | Zbl

[12] Lindenstrauss, J., Wulbert, D. E.: On the classification of the Banach spaces whose duals are $L_1$ spaces. J. Funct. Anal. 4 (1969), 332-349. | DOI | MR

[13] Ludvík, P., Spurný, J.: Baire classes of non-separable $L_1$-preduals. Q. J. Math. 66 (2015), 251-263. | DOI | MR

[14] Ludvík, P., Spurný, J.: Baire classes of $L_1$-preduals and $C^*$-algebras. Ill. J. Math. 58 (2014), 97-112. | DOI | MR

[15] Ludvík, P., Spurný, J.: Descriptive properties of elements of biduals of Banach spaces. Stud. Math. 209 (2012), 71-99. | DOI | MR

[16] Lukeš, J., Malý, J., Netuka, I., Spurný, J.: Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory. De Gruyter Studies in Mathematics 35 Walter de Gruyter, Berlin (2010). | MR | Zbl

[17] Lusky, W.: Every separable $L_1$-predual is complemented in a $C^*$-algebra. Stud. Math. 160 (2004), 103-116. | DOI | MR | Zbl

[18] Olsen, G. H.: On the classification of complex Lindenstrauss spaces. Math. Scand. 35 (1975), 237-258. | DOI | MR | Zbl

[19] Rogers, C. A., Jayne, J. E.: $K$-analytic sets. Analytic Sets. Lectures delivered at the London Mathematical Society Instructional Conference on Analytic Sets held at University College, University of London, 1978. Academic Press London (1980), 1-181. | MR

[20] Roy, A. K.: Convex functions on the dual ball of a complex Lindenstrauss space. J. Lond. Math. Soc., II. Ser. 20 (1979), 529-540. | DOI | MR | Zbl

[21] Rudin, W.: Real and Complex Analysis. McGraw-Hill New York (1987). | MR | Zbl

[22] Talagrand, M.: A new type of affine Borel function. Math. Scand. 54 (1984), 183-188. | DOI | MR | Zbl

Cité par Sources :