Keywords: complex $L_1$-predual; extreme point; Baire function
@article{10_1007_s10587_015_0201_6,
author = {Ludv{\'\i}k, Pavel and Spurn\'y, Ji\v{r}{\'\i}},
title = {Baire classes of complex $L_1$-preduals},
journal = {Czechoslovak Mathematical Journal},
pages = {659--676},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0201-6},
mrnumber = {3407598},
zbl = {06537685},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0201-6/}
}
TY - JOUR AU - Ludvík, Pavel AU - Spurný, Jiří TI - Baire classes of complex $L_1$-preduals JO - Czechoslovak Mathematical Journal PY - 2015 SP - 659 EP - 676 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0201-6/ DO - 10.1007/s10587-015-0201-6 LA - en ID - 10_1007_s10587_015_0201_6 ER -
Ludvík, Pavel; Spurný, Jiří. Baire classes of complex $L_1$-preduals. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 659-676. doi: 10.1007/s10587-015-0201-6
[1] Alfsen, E. M.: Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete 57 Springer, New York (1971). | MR | Zbl
[2] Argyros, S. A., Godefroy, G., Rosenthal, H. P.: Descriptive set theory and Banach spaces. Handbook of the Geometry of Banach Spaces, Vol. 2 W. B. Johnson et al. North-Holland Amsterdam (2003), 1007-1069. | DOI | MR | Zbl
[3] Effros, E. G.: On a class of complex Banach spaces. Ill. J. Math. 18 (1974), 48-59. | DOI | MR | Zbl
[4] Ellis, A. J., Rao, T. S. S. R. K., Roy, A. K., Uttersrud, U.: Facial characterizations of complex Lindenstrauss spaces. Trans. Am. Math. Soc. 268 (1981), 173-186. | DOI | MR | Zbl
[5] Holický, P., Kalenda, O.: Descriptive properties of spaces of measures. Bull. Pol. Acad. Sci., Math. 47 (1999), 37-51. | MR | Zbl
[6] Hustad, O.: Intersection properties of balls in complex Banach spaces whose duals are {$L_1$} spaces. Acta Math. 132 (1974), 283-313. | DOI | MR | Zbl
[7] Jellett, F.: On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex. Q. J. Math., Oxf. II. Ser. 36 (1985), 71-73. | DOI | MR | Zbl
[8] Kuratowski, K.: Topology. Vol. I. New edition, revised and augmented Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw (1966). | MR | Zbl
[9] Lacey, H. E.: The Isometric Theory of Classical Banach Spaces. Die Grundlehren der mathematischen Wissenschaften 208 Springer, New York (1974). | MR | Zbl
[10] Lazar, A. J.: The unit ball in conjugate $L_1$ spaces. Duke Math. J. 39 (1972), 1-8. | DOI | MR
[11] Lima, A.: Complex Banach spaces whose duals are $L_1$-spaces. Isr. J. Math. 24 (1976), 59-72. | DOI | MR | Zbl
[12] Lindenstrauss, J., Wulbert, D. E.: On the classification of the Banach spaces whose duals are $L_1$ spaces. J. Funct. Anal. 4 (1969), 332-349. | DOI | MR
[13] Ludvík, P., Spurný, J.: Baire classes of non-separable $L_1$-preduals. Q. J. Math. 66 (2015), 251-263. | DOI | MR
[14] Ludvík, P., Spurný, J.: Baire classes of $L_1$-preduals and $C^*$-algebras. Ill. J. Math. 58 (2014), 97-112. | DOI | MR
[15] Ludvík, P., Spurný, J.: Descriptive properties of elements of biduals of Banach spaces. Stud. Math. 209 (2012), 71-99. | DOI | MR
[16] Lukeš, J., Malý, J., Netuka, I., Spurný, J.: Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory. De Gruyter Studies in Mathematics 35 Walter de Gruyter, Berlin (2010). | MR | Zbl
[17] Lusky, W.: Every separable $L_1$-predual is complemented in a $C^*$-algebra. Stud. Math. 160 (2004), 103-116. | DOI | MR | Zbl
[18] Olsen, G. H.: On the classification of complex Lindenstrauss spaces. Math. Scand. 35 (1975), 237-258. | DOI | MR | Zbl
[19] Rogers, C. A., Jayne, J. E.: $K$-analytic sets. Analytic Sets. Lectures delivered at the London Mathematical Society Instructional Conference on Analytic Sets held at University College, University of London, 1978. Academic Press London (1980), 1-181. | MR
[20] Roy, A. K.: Convex functions on the dual ball of a complex Lindenstrauss space. J. Lond. Math. Soc., II. Ser. 20 (1979), 529-540. | DOI | MR | Zbl
[21] Rudin, W.: Real and Complex Analysis. McGraw-Hill New York (1987). | MR | Zbl
[22] Talagrand, M.: A new type of affine Borel function. Math. Scand. 54 (1984), 183-188. | DOI | MR | Zbl
Cité par Sources :