Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 617-657 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also present a structure-preserving numerical scheme to approximate solutions and provide computational experiments to motivate and illustrate the theoretical results.
We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also present a structure-preserving numerical scheme to approximate solutions and provide computational experiments to motivate and illustrate the theoretical results.
DOI : 10.1007/s10587-015-0200-7
Classification : 37A25, 58J65, 60H10, 60H15, 60H35, 60J60, 65C20, 65C30
Keywords: geometric stochastic wave equation; stochastic geodesic equation; ergodicity; attractivity; invariant measure; numerical approximation
@article{10_1007_s10587_015_0200_7,
     author = {Ba\v{n}as, \v{L}ubom{\'\i}r and Brze\'zniak, Zdzis{\l}aw and Neklyudov, Mikhail and Ondrej\'at, Martin and Prohl, Andreas},
     title = {Ergodicity for a stochastic geodesic equation in the tangent bundle of the {2D} sphere},
     journal = {Czechoslovak Mathematical Journal},
     pages = {617--657},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0200-7},
     mrnumber = {3407597},
     zbl = {06537684},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0200-7/}
}
TY  - JOUR
AU  - Baňas, Ľubomír
AU  - Brzeźniak, Zdzisław
AU  - Neklyudov, Mikhail
AU  - Ondreját, Martin
AU  - Prohl, Andreas
TI  - Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 617
EP  - 657
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0200-7/
DO  - 10.1007/s10587-015-0200-7
LA  - en
ID  - 10_1007_s10587_015_0200_7
ER  - 
%0 Journal Article
%A Baňas, Ľubomír
%A Brzeźniak, Zdzisław
%A Neklyudov, Mikhail
%A Ondreját, Martin
%A Prohl, Andreas
%T Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere
%J Czechoslovak Mathematical Journal
%D 2015
%P 617-657
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0200-7/
%R 10.1007/s10587-015-0200-7
%G en
%F 10_1007_s10587_015_0200_7
Baňas, Ľubomír; Brzeźniak, Zdzisław; Neklyudov, Mikhail; Ondreját, Martin; Prohl, Andreas. Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 617-657. doi: 10.1007/s10587-015-0200-7

[1] Aida, S., Kusuoka, S., Stroock, D.: On the support of Wiener functionals. Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Proc. Conf., Sanda and Kyoto, Japan, 1990 K. D. Elworthy et al. Pitman Res. Notes Math. Ser. 284 Longman Scientific & Technical, Harlow, Essex; John Wiley & Sons, New York (1993), 3-34. | MR | Zbl

[2] Arnold, L., Kliemann, W.: On unique ergodicity for degenerate diffusions. Stochastics 21 (1987), 41-61. | DOI | MR | Zbl

[3] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: A convergent finite-element-based discretization of the stochastic Landau-{L}ifshitz-{G}ilbert equation. IMA J. Numer. Anal. 34 (2014), 502-549. | DOI | MR | Zbl

[4] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic Ferromagnetism. Analysis and Numerics. De Gruyter Studies in Mathematics 58 De Gruyter, Berlin (2014). | MR | Zbl

[5] Baňas, Ľ., Prohl, A., Schätzle, R.: Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numer. Math. 115 (2010), 395-432. | DOI | MR | Zbl

[6] Bartels, S., Lubich, C., Prohl, A.: Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comput. 78 (2009), 1269-1292. | DOI | MR | Zbl

[7] Arous, G. Ben, Grădinaru, M.: Hölder norms and the support theorem for diffusions. C. R. Acad. Sci., Paris, Sér. I 316 French (1993), 283-286. | MR

[8] Arous, G. Ben, Grădinaru, M., Ledoux, M.: Hölder norms and the support theorem for diffusions. Ann. Inst. Henri Poincaré, Probab. Stat. 30 (1994), 415-436. | MR

[9] Brzeźniak, Z., Ondreját, M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. Ann. Probab. 41 (2013), 1938-1977. | DOI | MR | Zbl

[10] Brzeźniak, Z., Ondreját, M.: Weak solutions to stochastic wave equations with values in Riemannian manifolds. Commun. Partial Differ. Equations 36 (2011), 1624-1653. | DOI | MR | Zbl

[11] Brzeźniak, Z., Ondreját, M.: Strong solutions to stochastic wave equations with values in Riemannian manifolds. J. Funct. Anal. 253 (2007), 449-481. | DOI | MR | Zbl

[12] Cabaña, E. M.: On barrier problems for the vibrating string. Z. Wahrscheinlichkeitstheor. Verw. Geb. 22 (1972), 13-24. | DOI | MR | Zbl

[13] Carmona, R., Nualart, D.: Random nonlinear wave equations: propagation of singularities. Ann. Probab. 16 (1988), 730-751. | DOI | MR | Zbl

[14] Carmona, R., Nualart, D.: Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Relat. Fields 79 (1988), 469-508. | DOI | MR | Zbl

[15] Chow, P.-L.: Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab. 12 (2002), 361-381. | DOI | MR | Zbl

[16] Prato, G. Da, Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229 Cambridge Univ. Press, Cambridge (1996). | MR | Zbl

[17] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992). | MR | Zbl

[18] Dalang, R. C., Frangos, N. E.: The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 (1998), 187-212. | DOI | MR | Zbl

[19] Dalang, R. C., Lévêque, O.: Second-order linear hyperbolic {SPDE}s driven by isotropic Gaussian noise on a sphere. Ann. Probab. 32 (2004), 1068-1099. | DOI | MR | Zbl

[20] Diaconis, P., Freedman, D.: On the hit and run process. University of California Berkeley, Statistics Technical Report no. 497, http://stat-reports.lib.berkeley.edu/accessPages/497.html (1997).

[21] Ginibre, J., Velo, G.: The Cauchy problem for the $ O(N), \Bbb C P(N-1),$ and $G_{\Bbb C}(N, p)$ models. Ann. Phys. 142 (1982), 393-415. | DOI | MR

[22] Gyöngy, I., Pröhle, T.: On the approximation of stochastic differential equation and on Stroock-{V}aradhan's support theorem. Comput. Math. Appl. 19 (1990), 65-70. | DOI | MR | Zbl

[23] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171. | DOI | MR | Zbl

[24] Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheor. Verw. Geb. 30 (1974), 235-254. | DOI | MR | Zbl

[25] Ichihara, K., Kunita, H.: Supplements and corrections to the paper: ``A classification of the second order degenerate elliptic operators and its probabilistic characterization''. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39 (1977), 81-84. | DOI | MR | Zbl

[26] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library 24 North-Holland; Publishing Co. Tokyo: Kodansha, Amsterdam (1989). | MR | Zbl

[27] Karczewska, A., Zabczyk, J.: Stochastic {PDE}'s with function-valued solutions. Infinite Dimensional Stochastic Analysis. Proceedings of the Colloquium, Amsterdam, Netherlands, 1999 P. Clément et al. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet. 52 Royal Netherlands Academy of Arts and Sciences, Amsterdam (2000), 197-216. | MR | Zbl

[28] Karczewska, A., Zabczyk, J.: A note on stochastic wave equations. Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Conf., Germany, 1999 G. Lumer et al. Lecture Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 501-511. | MR | Zbl

[29] Marcus, M., Mizel, V. J.: Stochastic hyperbolic systems and the wave equation. Stochastics Stochastics Rep. 36 (1991), 225-244. | DOI | MR | Zbl

[30] Maslowski, B., Seidler, J., Vrkoč, I.: Integral continuity and stability for stochastic hyperbolic equations. Differ. Integral Equ. 6 (1993), 355-382. | MR | Zbl

[31] Matskyavichyus, V.: The support of the solution of a stochastic differential equation. Lith. Math. J. 26 (1986), 91-98 Russian English translation Lith. Math. J. 26 57-62 (1986). | MR

[32] Mattingly, J. C., Stuart, A. M., Higham, D. J.: Ergodicity for {SDE}s and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Processes Appl. 101 (2002), 185-232. | MR | Zbl

[33] Meyn, S., Tweedie, R. L.: Markov Chains and Stochastic Stability. With a prologue by Peter W. Glynn Cambridge University Press Cambridge (2009). | MR | Zbl

[34] Millet, A., Morien, P.-L.: On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution. Ann. Appl. Probab. 11 (2001), 922-951. | DOI | MR | Zbl

[35] Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27 (1999), 803-844. | DOI | MR

[36] Ondreját, M.: Existence of global martingale solutions to stochastic hyperbolic equations driven by a spatially homogeneous Wiener process. Stoch. Dyn. 6 (2006), 23-52. | DOI | MR | Zbl

[37] Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process. J. Evol. Equ. 4 (2004), 169-191. | DOI | MR | Zbl

[38] Peszat, S.: The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2 (2002), 383-394. | DOI | MR

[39] Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116 (2000), 421-443. | DOI | MR | Zbl

[40] Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl. 72 (1997), 187-204. | DOI | MR | Zbl

[41] Shatah, J., Struwe, M.: Geometric Wave Equations. Courant Lecture Notes in Mathematics 2 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1998). | MR | Zbl

[42] Stroock, D. W., Varadhan, S. R. S.: On the support of diffusion processes with applications to the strong maximum principle. Proc. Conf. Berkeley, Calififornia, 1970/1971, Vol. III: Probability Theory L. M. Le Cam et al. Univ. California Press Berkeley, Calififornia (1972), 333-359. | MR | Zbl

Cité par Sources :