Keywords: neutral type; existence; uniqueness; continous dependence
@article{10_1007_s10587_015_0199_9,
author = {Abbas, Umber and Lupulescu, Vasile and O'Regan, Donald and Younus, Awais},
title = {Neutral set differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {593--615},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0199-9},
mrnumber = {3407596},
zbl = {06537683},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/}
}
TY - JOUR AU - Abbas, Umber AU - Lupulescu, Vasile AU - O'Regan, Donald AU - Younus, Awais TI - Neutral set differential equations JO - Czechoslovak Mathematical Journal PY - 2015 SP - 593 EP - 615 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/ DO - 10.1007/s10587-015-0199-9 LA - en ID - 10_1007_s10587_015_0199_9 ER -
%0 Journal Article %A Abbas, Umber %A Lupulescu, Vasile %A O'Regan, Donald %A Younus, Awais %T Neutral set differential equations %J Czechoslovak Mathematical Journal %D 2015 %P 593-615 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/ %R 10.1007/s10587-015-0199-9 %G en %F 10_1007_s10587_015_0199_9
Abbas, Umber; Lupulescu, Vasile; O'Regan, Donald; Younus, Awais. Neutral set differential equations. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 593-615. doi: 10.1007/s10587-015-0199-9
[1] Abbas, U., Lupulescu, V.: Set functional differential equations. Commun. Appl. Nonlinear Anal. 18 (2011), 97-110. | MR | Zbl
[2] Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and Its Applications 268 Kluwer Academic Publishers, Dordrecht (1993). | MR | Zbl
[3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York (1955). | MR | Zbl
[4] Das, P. C., Parhi, N.: On a functional-differential equation of neutral type. J. Math. Anal. Appl. 35 (1971), 67-82. | DOI | MR | Zbl
[5] Blasi, F. S. de, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital., IV. Ser. 2 Italian (1969), 491-501. | Zbl
[6] Blasi, F. S. de, Lakshmikantham, V., Bhaskar, T. Gnana: An existence theorem for set differential inclusions in a semilinear metric space. Control Cybern. 36 (2007), 571-582. | MR
[7] Debreu, G.: Integration of correspondences. Proc. 5th Berkeley Symp. Math. Stat. Probab. (Univ. Calif. 1965/66). Vol. 2: Contributions to Probability Theory, Part 1 Univ. California Press, Berkeley, Calif. (1967), 351-372. | MR | Zbl
[8] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional-Differential Equations. Applied Mathematical Sciences 99 Springer, New York (1993). | DOI | MR
[9] Himmelberg, C. J.: Precompact contraction of metric uniformities, and the continuity of {$F(t,x)$}. Rend. Semin. Mat. Univ. Padova 50 (1973), 185-188. | MR
[10] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. I: Theory. Mathematics and Its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). | MR
[11] Kisielewicz, M.: Some generic properties of functional-differential equations of neutral type. J. Math. Anal. Appl. 97 (1983), 229-244. | DOI | MR | Zbl
[12] Kisielewicz, M.: Existence theorem for generalized functional-differential equations of neutral type. J. Math. Anal. Appl. 78 (1980), 173-182. | DOI | MR | Zbl
[13] Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006). | MR
[14] Lakshmikantham, V., Tolstonogov, A. A.: Existence and interrelation between set and fuzzy differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 55 (2003), 255-268. | DOI | MR | Zbl
[15] Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set-valued and Fuzzy Set-valued Random Variables. Theory and Decision Library. Series B: Mathematical and Statistical Methods 43 Kluwer Academic Publishers Group, Dordrecht (2002). | MR
[16] Pinto, A. J. B. Lopes, Blasi, F. S. De, Iervolino, F.: Uniqueness and existence theorems for differential equations with compact convex valued solutions. Boll. Unione Mat. Ital., IV. Ser. 3 (1970), 47-54. | MR
[17] Lupulescu, V.: Successive approximations to solutions of set differential equations in Banach spaces. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 391-401. | MR | Zbl
[18] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 289-305. | DOI | MR | Zbl
[19] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations. Appl. Math. Comput. 218 (2012), 9427-9437. | DOI | MR | Zbl
[20] Malinowski, M. T., Michta, M.: Stochastic set differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1247-1256. | DOI | MR | Zbl
[21] Markov, S. M.: Existence and uniqueness of solutions of the interval differential equation {$X^{\prime} =F(t, X)$}. C. R. Acad. Bulg. Sci. 31 (1978), 1519-1522. | MR
[22] Plotnikov, V. A., Rashkov, P. I.: Averaging in differential equations with Hukuhara derivative and delay. Funct. Differ. Equ. 8 (2001), 371-381. | MR | Zbl
[23] Tolstonogov, A.: Differential Inclusions in a Banach Space. Mathematics and Its Applications 524 Kluwer Academic Publishers, Dordrecht 2000. Translated from Russian. | MR | Zbl
[24] Devi, J. Vasundhara, Vatsala, A. S.: A study of set differential equations with delay. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 287-300. | MR
Cité par Sources :