Neutral set differential equations
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 593-615 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin {equation*} \begin {cases} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \kern .25em X|_{[-r,0]}=\Psi , \end {cases} \end {equation*} where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$\ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is\ the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$\ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.
The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin {equation*} \begin {cases} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \kern .25em X|_{[-r,0]}=\Psi , \end {cases} \end {equation*} where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$\ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is\ the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$\ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.
DOI : 10.1007/s10587-015-0199-9
Classification : 34A12, 34K40
Keywords: neutral type; existence; uniqueness; continous dependence
@article{10_1007_s10587_015_0199_9,
     author = {Abbas, Umber and Lupulescu, Vasile and O'Regan, Donald and Younus, Awais},
     title = {Neutral set differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {593--615},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0199-9},
     mrnumber = {3407596},
     zbl = {06537683},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/}
}
TY  - JOUR
AU  - Abbas, Umber
AU  - Lupulescu, Vasile
AU  - O'Regan, Donald
AU  - Younus, Awais
TI  - Neutral set differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 593
EP  - 615
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/
DO  - 10.1007/s10587-015-0199-9
LA  - en
ID  - 10_1007_s10587_015_0199_9
ER  - 
%0 Journal Article
%A Abbas, Umber
%A Lupulescu, Vasile
%A O'Regan, Donald
%A Younus, Awais
%T Neutral set differential equations
%J Czechoslovak Mathematical Journal
%D 2015
%P 593-615
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/
%R 10.1007/s10587-015-0199-9
%G en
%F 10_1007_s10587_015_0199_9
Abbas, Umber; Lupulescu, Vasile; O'Regan, Donald; Younus, Awais. Neutral set differential equations. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 593-615. doi: 10.1007/s10587-015-0199-9

[1] Abbas, U., Lupulescu, V.: Set functional differential equations. Commun. Appl. Nonlinear Anal. 18 (2011), 97-110. | MR | Zbl

[2] Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and Its Applications 268 Kluwer Academic Publishers, Dordrecht (1993). | MR | Zbl

[3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York (1955). | MR | Zbl

[4] Das, P. C., Parhi, N.: On a functional-differential equation of neutral type. J. Math. Anal. Appl. 35 (1971), 67-82. | DOI | MR | Zbl

[5] Blasi, F. S. de, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital., IV. Ser. 2 Italian (1969), 491-501. | Zbl

[6] Blasi, F. S. de, Lakshmikantham, V., Bhaskar, T. Gnana: An existence theorem for set differential inclusions in a semilinear metric space. Control Cybern. 36 (2007), 571-582. | MR

[7] Debreu, G.: Integration of correspondences. Proc. 5th Berkeley Symp. Math. Stat. Probab. (Univ. Calif. 1965/66). Vol. 2: Contributions to Probability Theory, Part 1 Univ. California Press, Berkeley, Calif. (1967), 351-372. | MR | Zbl

[8] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional-Differential Equations. Applied Mathematical Sciences 99 Springer, New York (1993). | DOI | MR

[9] Himmelberg, C. J.: Precompact contraction of metric uniformities, and the continuity of {$F(t,x)$}. Rend. Semin. Mat. Univ. Padova 50 (1973), 185-188. | MR

[10] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. I: Theory. Mathematics and Its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). | MR

[11] Kisielewicz, M.: Some generic properties of functional-differential equations of neutral type. J. Math. Anal. Appl. 97 (1983), 229-244. | DOI | MR | Zbl

[12] Kisielewicz, M.: Existence theorem for generalized functional-differential equations of neutral type. J. Math. Anal. Appl. 78 (1980), 173-182. | DOI | MR | Zbl

[13] Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006). | MR

[14] Lakshmikantham, V., Tolstonogov, A. A.: Existence and interrelation between set and fuzzy differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 55 (2003), 255-268. | DOI | MR | Zbl

[15] Li, S., Ogura, Y., Kreinovich, V.: Limit Theorems and Applications of Set-valued and Fuzzy Set-valued Random Variables. Theory and Decision Library. Series B: Mathematical and Statistical Methods 43 Kluwer Academic Publishers Group, Dordrecht (2002). | MR

[16] Pinto, A. J. B. Lopes, Blasi, F. S. De, Iervolino, F.: Uniqueness and existence theorems for differential equations with compact convex valued solutions. Boll. Unione Mat. Ital., IV. Ser. 3 (1970), 47-54. | MR

[17] Lupulescu, V.: Successive approximations to solutions of set differential equations in Banach spaces. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 391-401. | MR | Zbl

[18] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 289-305. | DOI | MR | Zbl

[19] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations. Appl. Math. Comput. 218 (2012), 9427-9437. | DOI | MR | Zbl

[20] Malinowski, M. T., Michta, M.: Stochastic set differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1247-1256. | DOI | MR | Zbl

[21] Markov, S. M.: Existence and uniqueness of solutions of the interval differential equation {$X^{\prime} =F(t, X)$}. C. R. Acad. Bulg. Sci. 31 (1978), 1519-1522. | MR

[22] Plotnikov, V. A., Rashkov, P. I.: Averaging in differential equations with Hukuhara derivative and delay. Funct. Differ. Equ. 8 (2001), 371-381. | MR | Zbl

[23] Tolstonogov, A.: Differential Inclusions in a Banach Space. Mathematics and Its Applications 524 Kluwer Academic Publishers, Dordrecht 2000. Translated from Russian. | MR | Zbl

[24] Devi, J. Vasundhara, Vatsala, A. S.: A study of set differential equations with delay. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 287-300. | MR

Cité par Sources :