Neutral set differential equations
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 593-615
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin {equation*} \begin {cases} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \kern .25em X|_{[-r,0]}=\Psi , \end {cases} \end {equation*} where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$\ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is\ the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$\ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.
The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type\begin {equation*} \begin {cases} D_{H}X(t)=F(t,X_{t},D_{H}X_{t}), \\ \kern .25em X|_{[-r,0]}=\Psi , \end {cases} \end {equation*} where $F\colon [0,b]\times \mathcal {C}_{0}\times \mathfrak {L}_{0}^{1}\rightarrow K_{c}(E)$ is a given function, $K_{c}(E)$\ is the family of all nonempty compact and convex subsets of a separable Banach space $E$, $\mathcal {C}_{0}$ denotes the space of all continuous set-valued functions $X$ from $[-r,0]$ into $K_{c}(E)$, $\mathfrak {L}_{0}^{1}$ is\ the space of all integrally bounded set-valued functions $X\colon [-r,0]\rightarrow K_{c}(E)$, $\Psi \in \mathcal {C}_{0}$\ and $D_{H}$ is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied.
DOI :
10.1007/s10587-015-0199-9
Classification :
34A12, 34K40
Keywords: neutral type; existence; uniqueness; continous dependence
Keywords: neutral type; existence; uniqueness; continous dependence
@article{10_1007_s10587_015_0199_9,
author = {Abbas, Umber and Lupulescu, Vasile and O'Regan, Donald and Younus, Awais},
title = {Neutral set differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {593--615},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0199-9},
mrnumber = {3407596},
zbl = {06537683},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/}
}
TY - JOUR AU - Abbas, Umber AU - Lupulescu, Vasile AU - O'Regan, Donald AU - Younus, Awais TI - Neutral set differential equations JO - Czechoslovak Mathematical Journal PY - 2015 SP - 593 EP - 615 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/ DO - 10.1007/s10587-015-0199-9 LA - en ID - 10_1007_s10587_015_0199_9 ER -
%0 Journal Article %A Abbas, Umber %A Lupulescu, Vasile %A O'Regan, Donald %A Younus, Awais %T Neutral set differential equations %J Czechoslovak Mathematical Journal %D 2015 %P 593-615 %V 65 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0199-9/ %R 10.1007/s10587-015-0199-9 %G en %F 10_1007_s10587_015_0199_9
Abbas, Umber; Lupulescu, Vasile; O'Regan, Donald; Younus, Awais. Neutral set differential equations. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 593-615. doi: 10.1007/s10587-015-0199-9
Cité par Sources :