On a generalization of a theorem of Burnside
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 587-591
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A theorem of Burnside asserts that a finite group $G$ is \mbox {$p$-nilpotent} if for some prime $p$ a Sylow \mbox {$p$-subgroup} of $G$ lies in the center of its normalizer. In this paper, let $G$ be a finite group and $p$ the smallest prime divisor of $|G|$, the order of $G$. Let $P\in {\rm Syl}_p(G)$. As a generalization of Burnside's theorem, it is shown that if every non-cyclic \mbox {$p$-subgroup} of $G$ is self-normalizing or normal in $G$ then $G$ is solvable. In particular, if $P\ncong \langle a,b\vert a^{p^{n-1}}=1,b^2=1, b^{-1}ab=a^{1+{p^{n-2}}}\rangle $, where $n\geq 3$ for $p>2$ and $n\geq 4$ for $p=2$, then $G$ is \mbox {$p$-nilpotent} or \mbox {$p$-closed}.
A theorem of Burnside asserts that a finite group $G$ is \mbox {$p$-nilpotent} if for some prime $p$ a Sylow \mbox {$p$-subgroup} of $G$ lies in the center of its normalizer. In this paper, let $G$ be a finite group and $p$ the smallest prime divisor of $|G|$, the order of $G$. Let $P\in {\rm Syl}_p(G)$. As a generalization of Burnside's theorem, it is shown that if every non-cyclic \mbox {$p$-subgroup} of $G$ is self-normalizing or normal in $G$ then $G$ is solvable. In particular, if $P\ncong \langle a,b\vert a^{p^{n-1}}=1,b^2=1, b^{-1}ab=a^{1+{p^{n-2}}}\rangle $, where $n\geq 3$ for $p>2$ and $n\geq 4$ for $p=2$, then $G$ is \mbox {$p$-nilpotent} or \mbox {$p$-closed}.
DOI :
10.1007/s10587-015-0198-x
Classification :
20D10, 20D20
Keywords: non-cyclic $p$-subgroup; $p$-nilpotent; self-normalizing subgroup; normal subgroup
Keywords: non-cyclic $p$-subgroup; $p$-nilpotent; self-normalizing subgroup; normal subgroup
@article{10_1007_s10587_015_0198_x,
author = {Shi, Jiangtao},
title = {On a generalization of a theorem of {Burnside}},
journal = {Czechoslovak Mathematical Journal},
pages = {587--591},
year = {2015},
volume = {65},
number = {3},
doi = {10.1007/s10587-015-0198-x},
mrnumber = {3407595},
zbl = {06537682},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0198-x/}
}
TY - JOUR AU - Shi, Jiangtao TI - On a generalization of a theorem of Burnside JO - Czechoslovak Mathematical Journal PY - 2015 SP - 587 EP - 591 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0198-x/ DO - 10.1007/s10587-015-0198-x LA - en ID - 10_1007_s10587_015_0198_x ER -
Shi, Jiangtao. On a generalization of a theorem of Burnside. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 587-591. doi: 10.1007/s10587-015-0198-x
Cité par Sources :