On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 579-585
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.
We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.
DOI : 10.1007/s10587-015-0197-y
Classification : 32H02, 32H50, 32M05
Keywords: parabolic boundary point; convex domain; automorphism group
@article{10_1007_s10587_015_0197_y,
     author = {Berteloot, Fran\c{c}ois and Thu, Ninh Van},
     title = {On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {579--585},
     year = {2015},
     volume = {65},
     number = {3},
     doi = {10.1007/s10587-015-0197-y},
     mrnumber = {3407594},
     zbl = {06537681},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0197-y/}
}
TY  - JOUR
AU  - Berteloot, François
AU  - Thu, Ninh Van
TI  - On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 579
EP  - 585
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0197-y/
DO  - 10.1007/s10587-015-0197-y
LA  - en
ID  - 10_1007_s10587_015_0197_y
ER  - 
%0 Journal Article
%A Berteloot, François
%A Thu, Ninh Van
%T On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$
%J Czechoslovak Mathematical Journal
%D 2015
%P 579-585
%V 65
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0197-y/
%R 10.1007/s10587-015-0197-y
%G en
%F 10_1007_s10587_015_0197_y
Berteloot, François; Thu, Ninh Van. On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 3, pp. 579-585. doi: 10.1007/s10587-015-0197-y

[1] Bedford, E., Pinchuk, S.: Domains in {${\mathbb C}^2$} with noncompact automorphism groups. Indiana Univ. Math. J. 47 (1998), 199-222. | DOI | MR

[2] Bedford, E., Pinchuk, S.: Domains in {${\mathbb C}^{n+1}$} with noncompact automorphism group. J. Geom. Anal. 1 (1991), 165-191. | DOI | MR

[3] Bedford, E., Pinchuk, S. I.: Domains in {${\mathbb C}^2$} with noncompact groups of holomorphic automorphisms. Math. USSR, Sb. 63 (1989), 141-151 translation from Mat. Sb., Nov. Ser. 135(177) (1988), 147-157, 271 Russian. | DOI | MR

[4] Berteloot, F.: Principe de Bloch et estimations de la métrique de Kobayashi des domaines de $\mathbb C^2$. J. Geom. Anal. 13 French (2003), 29-37. | DOI | MR

[5] Berteloot, F.: Characterization of models in {$\mathbb C^2$} by their automorphism groups. Int. J. Math. 5 (1994), 619-634. | DOI | MR

[6] Berteloot, F., C{\oe}uré, G.: Domaines de {${\mathbb C}^2$}, pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes. Ann. Inst. Fourier 41 French (1991), 77-86. | DOI | MR

[7] Byun, J., Gaussier, H.: On the compactness of the automorphism group of a domain. C. R., Math., Acad. Sci. Paris 341 (2005), 545-548. | DOI | MR | Zbl

[8] Greene, R. E., Krantz, S. G.: Techniques for studying automorphisms of weakly pseudoconvex domains. Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 Math. Notes 38 Princeton University Press, Princeton (1993), 389-410 J. E. Fornæss. | MR | Zbl

[9] Isaev, A. V., Krantz, S. G.: Domains with non-compact automorphism group: a survey. Adv. Math. 146 (1999), 1-38. | DOI | MR | Zbl

[10] Kang, H.: Holomorphic automorphisms of certain class of domains of infinite type. Tohoku Math. J. (2) 46 (1994), 435-442. | DOI | MR | Zbl

[11] Kim, K.-T.: On a boundary point repelling automorphism orbits. J. Math. Anal. Appl. 179 (1993), 463-482. | DOI | MR

[12] Kim, K.-T., Krantz, S. G.: Some new results on domains in complex space with non-compact automorphism group. J. Math. Anal. Appl. 281 (2003), 417-424. | DOI | MR | Zbl

[13] Kim, K.-T., Krantz, S. G.: Complex scaling and domains with non-compact automorphism group. Ill. J. Math. 45 (2001), 1273-1299. | DOI | MR | Zbl

[14] Landucci, M.: The automorphism group of domains with boundary points of infinite type. Ill. J. Math. 48 (2004), 875-885. | DOI | MR | Zbl

[15] Rosay, J.-P.: Sur une caractérisation de la boule parmi les domaines de {${\mathbb C}^n$} par son groupe d'automorphismes. Ann. Inst. Fourier 29 French (1979), 91-97. | DOI | MR

[16] Wong, B.: Characterization of the unit ball in {${\mathbb C}^n$} by its automorphism group. Invent. Math. 41 (1977), 253-257. | DOI | MR

Cité par Sources :