On the distribution of consecutive square-free primitive roots modulo $p$
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 555-564
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A positive integer $n$ is called a square-free number if it is not divisible by a perfect square except $1$. Let $p$ be an odd prime. For $n$ with $(n,p)=1$, the smallest positive integer $f$ such that $n^f \equiv 1 \pmod p$ is called the exponent of $n$ modulo $p$. If the exponent of $n$ modulo $p$ is $p-1$, then $n$ is called a primitive root mod $p$. \endgraf Let $A(n)$ be the characteristic function of the square-free primitive roots modulo $p$. In this paper we study the distribution $$ \sum _{n\leq x}A(n)A(n+1), $$ and give an asymptotic formula by using properties of character sums.
DOI :
10.1007/s10587-015-0194-1
Classification :
11B50, 11L40, 11N25
Keywords: square-free; primitive root; square sieve; character sum
Keywords: square-free; primitive root; square sieve; character sum
@article{10_1007_s10587_015_0194_1,
author = {Liu, Huaning and Dong, Hui},
title = {On the distribution of consecutive square-free primitive roots modulo $p$},
journal = {Czechoslovak Mathematical Journal},
pages = {555--564},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2015},
doi = {10.1007/s10587-015-0194-1},
mrnumber = {3360445},
zbl = {06486965},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/}
}
TY - JOUR AU - Liu, Huaning AU - Dong, Hui TI - On the distribution of consecutive square-free primitive roots modulo $p$ JO - Czechoslovak Mathematical Journal PY - 2015 SP - 555 EP - 564 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/ DO - 10.1007/s10587-015-0194-1 LA - en ID - 10_1007_s10587_015_0194_1 ER -
%0 Journal Article %A Liu, Huaning %A Dong, Hui %T On the distribution of consecutive square-free primitive roots modulo $p$ %J Czechoslovak Mathematical Journal %D 2015 %P 555-564 %V 65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/ %R 10.1007/s10587-015-0194-1 %G en %F 10_1007_s10587_015_0194_1
Liu, Huaning; Dong, Hui. On the distribution of consecutive square-free primitive roots modulo $p$. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 555-564. doi: 10.1007/s10587-015-0194-1
Cité par Sources :