On the distribution of consecutive square-free primitive roots modulo $p$
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 555-564.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A positive integer $n$ is called a square-free number if it is not divisible by a perfect square except $1$. Let $p$ be an odd prime. For $n$ with $(n,p)=1$, the smallest positive integer $f$ such that $n^f \equiv 1 \pmod p$ is called the exponent of $n$ modulo $p$. If the exponent of $n$ modulo $p$ is $p-1$, then $n$ is called a primitive root mod $p$. \endgraf Let $A(n)$ be the characteristic function of the square-free primitive roots modulo $p$. In this paper we study the distribution $$ \sum _{n\leq x}A(n)A(n+1), $$ and give an asymptotic formula by using properties of character sums.
DOI : 10.1007/s10587-015-0194-1
Classification : 11B50, 11L40, 11N25
Keywords: square-free; primitive root; square sieve; character sum
@article{10_1007_s10587_015_0194_1,
     author = {Liu, Huaning and Dong, Hui},
     title = {On the distribution of consecutive square-free primitive roots modulo $p$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {555--564},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2015},
     doi = {10.1007/s10587-015-0194-1},
     mrnumber = {3360445},
     zbl = {06486965},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/}
}
TY  - JOUR
AU  - Liu, Huaning
AU  - Dong, Hui
TI  - On the distribution of consecutive square-free primitive roots modulo $p$
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 555
EP  - 564
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/
DO  - 10.1007/s10587-015-0194-1
LA  - en
ID  - 10_1007_s10587_015_0194_1
ER  - 
%0 Journal Article
%A Liu, Huaning
%A Dong, Hui
%T On the distribution of consecutive square-free primitive roots modulo $p$
%J Czechoslovak Mathematical Journal
%D 2015
%P 555-564
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/
%R 10.1007/s10587-015-0194-1
%G en
%F 10_1007_s10587_015_0194_1
Liu, Huaning; Dong, Hui. On the distribution of consecutive square-free primitive roots modulo $p$. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 555-564. doi : 10.1007/s10587-015-0194-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0194-1/

Cité par Sources :