Keywords: longest path; matching number
@article{10_1007_s10587_015_0193_2,
author = {Chen, Fuyuan},
title = {Nonempty intersection of longest paths in a graph with a small matching number},
journal = {Czechoslovak Mathematical Journal},
pages = {545--553},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0193-2},
mrnumber = {3360444},
zbl = {06486964},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0193-2/}
}
TY - JOUR AU - Chen, Fuyuan TI - Nonempty intersection of longest paths in a graph with a small matching number JO - Czechoslovak Mathematical Journal PY - 2015 SP - 545 EP - 553 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0193-2/ DO - 10.1007/s10587-015-0193-2 LA - en ID - 10_1007_s10587_015_0193_2 ER -
%0 Journal Article %A Chen, Fuyuan %T Nonempty intersection of longest paths in a graph with a small matching number %J Czechoslovak Mathematical Journal %D 2015 %P 545-553 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0193-2/ %R 10.1007/s10587-015-0193-2 %G en %F 10_1007_s10587_015_0193_2
Chen, Fuyuan. Nonempty intersection of longest paths in a graph with a small matching number. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 545-553. doi: 10.1007/s10587-015-0193-2
[1] Balister, P. N., Győri, E., Lehel, J., Schelp, R. H.: Longest paths in circular arc graphs. Comb. Probab. Comput. 13 (2004), 311-317. | DOI | MR | Zbl
[2] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244 Springer, Berlin (2008). | DOI | MR | Zbl
[3] Rezende, S. F. de, Fernandes, C. G., Martin, D. M., Wakabayashi, Y.: Intersecting longest paths. Discrete Math. 313 (2013), 1401-1408. | DOI | MR | Zbl
[4] Ehrenmüller, J., Fernandes, C. G., Heise, C. G.: Nonempty intersection of longest paths in series-parallel graphs. Preprint 2013, arXiv:1310.1376v2.
[5] Gallai, T.: Problem 4. Theory of Graphs Proceedings of the Colloquium on Graph Theory, held at Tihany, Hungary, 1966 Academic Press, New York; Akadémiai Kiadó, Budapest (1968), P. Erdős et al. | MR
[6] Harris, J. M., Hirst, J. L., Mossinghoff, M. J.: Combinatorics and Graph Theory. Undergraduate Texts in Mathematics Springer, New York (2008). | MR | Zbl
[7] Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths. Ars Comb. 29 (1990), 43-52. | MR | Zbl
[8] Shabbir, A., Zamfirescu, C. T., Zamfirescu, T. I.: Intersecting longest paths and longest cycles: A survey. Electron. J. Graph Theory Appl. (electronic only) 1 (2013), 56-76. | MR | Zbl
[9] Voss, H.-J.: Cycles and Bridges in Graphs. Mathematics and Its Applications 49, East European Series Kluwer Academic Publishers, Dordrecht; VEB Deutscher Verlag der Wissenschaften, Berlin (1991). | MR | Zbl
[10] Walther, H.: Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen. J. Comb. Theory 6 German (1969), 1-6. | DOI | MR | Zbl
[11] Walther, H., Voss, H.-J.: Über Kreise in Graphen. VEB Deutscher Verlag der Wissenschaften Berlin German (1974). | Zbl
[12] West, D. B.: Open Problems---Graph Theory and Combinatorics, Hitting All Longest Paths. http://www.math.uiuc.edu/ west/openp/pathtran.html, accessed in January 2013.
[13] Zamfirescu, T.: On longest paths and circuits in graphs. Math. Scand. 38 (1976), 211-239. | DOI | MR | Zbl
Cité par Sources :