Nonempty intersection of longest paths in a graph with a small matching number
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 545-553 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A maximum matching of a graph $G$ is a matching of $G$ with the largest number of edges. The matching number of a graph $G$, denoted by $\alpha '(G)$, is the number of edges in a maximum matching of $G$. In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Although this conjecture has been disproved, finding some nice classes of graphs that support this conjecture is still very meaningful and interesting. In this short note, we prove that Gallai's conjecture is true for every connected graph $G$ with $\alpha '(G)\leq 3$.
A maximum matching of a graph $G$ is a matching of $G$ with the largest number of edges. The matching number of a graph $G$, denoted by $\alpha '(G)$, is the number of edges in a maximum matching of $G$. In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Although this conjecture has been disproved, finding some nice classes of graphs that support this conjecture is still very meaningful and interesting. In this short note, we prove that Gallai's conjecture is true for every connected graph $G$ with $\alpha '(G)\leq 3$.
DOI : 10.1007/s10587-015-0193-2
Classification : 05C38, 05C70, 05C75
Keywords: longest path; matching number
@article{10_1007_s10587_015_0193_2,
     author = {Chen, Fuyuan},
     title = {Nonempty intersection of longest paths in a graph with a small matching number},
     journal = {Czechoslovak Mathematical Journal},
     pages = {545--553},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0193-2},
     mrnumber = {3360444},
     zbl = {06486964},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0193-2/}
}
TY  - JOUR
AU  - Chen, Fuyuan
TI  - Nonempty intersection of longest paths in a graph with a small matching number
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 545
EP  - 553
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0193-2/
DO  - 10.1007/s10587-015-0193-2
LA  - en
ID  - 10_1007_s10587_015_0193_2
ER  - 
%0 Journal Article
%A Chen, Fuyuan
%T Nonempty intersection of longest paths in a graph with a small matching number
%J Czechoslovak Mathematical Journal
%D 2015
%P 545-553
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0193-2/
%R 10.1007/s10587-015-0193-2
%G en
%F 10_1007_s10587_015_0193_2
Chen, Fuyuan. Nonempty intersection of longest paths in a graph with a small matching number. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 545-553. doi: 10.1007/s10587-015-0193-2

[1] Balister, P. N., Győri, E., Lehel, J., Schelp, R. H.: Longest paths in circular arc graphs. Comb. Probab. Comput. 13 (2004), 311-317. | DOI | MR | Zbl

[2] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244 Springer, Berlin (2008). | DOI | MR | Zbl

[3] Rezende, S. F. de, Fernandes, C. G., Martin, D. M., Wakabayashi, Y.: Intersecting longest paths. Discrete Math. 313 (2013), 1401-1408. | DOI | MR | Zbl

[4] Ehrenmüller, J., Fernandes, C. G., Heise, C. G.: Nonempty intersection of longest paths in series-parallel graphs. Preprint 2013, arXiv:1310.1376v2.

[5] Gallai, T.: Problem 4. Theory of Graphs Proceedings of the Colloquium on Graph Theory, held at Tihany, Hungary, 1966 Academic Press, New York; Akadémiai Kiadó, Budapest (1968), P. Erdős et al. | MR

[6] Harris, J. M., Hirst, J. L., Mossinghoff, M. J.: Combinatorics and Graph Theory. Undergraduate Texts in Mathematics Springer, New York (2008). | MR | Zbl

[7] Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths. Ars Comb. 29 (1990), 43-52. | MR | Zbl

[8] Shabbir, A., Zamfirescu, C. T., Zamfirescu, T. I.: Intersecting longest paths and longest cycles: A survey. Electron. J. Graph Theory Appl. (electronic only) 1 (2013), 56-76. | MR | Zbl

[9] Voss, H.-J.: Cycles and Bridges in Graphs. Mathematics and Its Applications 49, East European Series Kluwer Academic Publishers, Dordrecht; VEB Deutscher Verlag der Wissenschaften, Berlin (1991). | MR | Zbl

[10] Walther, H.: Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen. J. Comb. Theory 6 German (1969), 1-6. | DOI | MR | Zbl

[11] Walther, H., Voss, H.-J.: Über Kreise in Graphen. VEB Deutscher Verlag der Wissenschaften Berlin German (1974). | Zbl

[12] West, D. B.: Open Problems---Graph Theory and Combinatorics, Hitting All Longest Paths. http://www.math.uiuc.edu/ west/openp/pathtran.html, accessed in January 2013.

[13] Zamfirescu, T.: On longest paths and circuits in graphs. Math. Scand. 38 (1976), 211-239. | DOI | MR | Zbl

Cité par Sources :