Nested matrices and inverse $M$-matrices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 537-544
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the $LU$- and $QR$-factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse $M$-matrices with symmetric, irreducible, tridiagonal inverses.
DOI :
10.1007/s10587-015-0192-3
Classification :
15A09, 15A15, 15B05
Keywords: nested matrix; tridiagonal matrix; inverse $M$-matrix; principal minor; determinant; $QR$-factorization
Keywords: nested matrix; tridiagonal matrix; inverse $M$-matrix; principal minor; determinant; $QR$-factorization
@article{10_1007_s10587_015_0192_3,
author = {Stuart, Jeffrey L.},
title = {Nested matrices and inverse $M$-matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {537--544},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2015},
doi = {10.1007/s10587-015-0192-3},
mrnumber = {3360443},
zbl = {06486963},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0192-3/}
}
TY - JOUR AU - Stuart, Jeffrey L. TI - Nested matrices and inverse $M$-matrices JO - Czechoslovak Mathematical Journal PY - 2015 SP - 537 EP - 544 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0192-3/ DO - 10.1007/s10587-015-0192-3 LA - en ID - 10_1007_s10587_015_0192_3 ER -
Stuart, Jeffrey L. Nested matrices and inverse $M$-matrices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 537-544. doi: 10.1007/s10587-015-0192-3
Cité par Sources :