Nested matrices and inverse $M$-matrices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 537-544.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the $LU$- and $QR$-factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse $M$-matrices with symmetric, irreducible, tridiagonal inverses.
DOI : 10.1007/s10587-015-0192-3
Classification : 15A09, 15A15, 15B05
Keywords: nested matrix; tridiagonal matrix; inverse $M$-matrix; principal minor; determinant; $QR$-factorization
@article{10_1007_s10587_015_0192_3,
     author = {Stuart, Jeffrey L.},
     title = {Nested matrices and inverse $M$-matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {537--544},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2015},
     doi = {10.1007/s10587-015-0192-3},
     mrnumber = {3360443},
     zbl = {06486963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0192-3/}
}
TY  - JOUR
AU  - Stuart, Jeffrey L.
TI  - Nested matrices and inverse $M$-matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 537
EP  - 544
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0192-3/
DO  - 10.1007/s10587-015-0192-3
LA  - en
ID  - 10_1007_s10587_015_0192_3
ER  - 
%0 Journal Article
%A Stuart, Jeffrey L.
%T Nested matrices and inverse $M$-matrices
%J Czechoslovak Mathematical Journal
%D 2015
%P 537-544
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0192-3/
%R 10.1007/s10587-015-0192-3
%G en
%F 10_1007_s10587_015_0192_3
Stuart, Jeffrey L. Nested matrices and inverse $M$-matrices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 537-544. doi : 10.1007/s10587-015-0192-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0192-3/

Cité par Sources :