On Laplacian eigenvalues of connected graphs
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 529-535
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _{n-1}>\mu _n =0$. Denote by $\mu _I =\mu _{r_1}+\mu _{r_2} +\cdots +\mu _{r_k}$, $1\le k\le n-2$, $1\le r_1
Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _{n-1}>\mu _n =0$. Denote by $\mu _I =\mu _{r_1}+\mu _{r_2} +\cdots +\mu _{r_k}$, $1\le k\le n-2$, $1\le r_1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _{I_1}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _{I_n}=\mu _{n-k}+\cdots +\mu _{n-1}$. Lower bounds of graph invariants $\mu _{I_1}-\mu _{I_n}$ and ${\mu _{I_1}}/{\mu _{I_n}}$ are obtained. Some known inequalities follow as a special case.
DOI : 10.1007/s10587-015-0191-4
Classification : 05C50, 15A18
Keywords: Laplacian eigenvalues; linear spread; ratio spread
@article{10_1007_s10587_015_0191_4,
     author = {Milovanovi\'c, Igor \v{Z}. and Milovanovi\'c, Emina I. and Glogi\'c, Edin},
     title = {On {Laplacian} eigenvalues of connected graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {529--535},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0191-4},
     mrnumber = {3360442},
     zbl = {06486962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0191-4/}
}
TY  - JOUR
AU  - Milovanović, Igor Ž.
AU  - Milovanović, Emina I.
AU  - Glogić, Edin
TI  - On Laplacian eigenvalues of connected graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 529
EP  - 535
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0191-4/
DO  - 10.1007/s10587-015-0191-4
LA  - en
ID  - 10_1007_s10587_015_0191_4
ER  - 
%0 Journal Article
%A Milovanović, Igor Ž.
%A Milovanović, Emina I.
%A Glogić, Edin
%T On Laplacian eigenvalues of connected graphs
%J Czechoslovak Mathematical Journal
%D 2015
%P 529-535
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0191-4/
%R 10.1007/s10587-015-0191-4
%G en
%F 10_1007_s10587_015_0191_4
Milovanović, Igor Ž.; Milovanović, Emina I.; Glogić, Edin. On Laplacian eigenvalues of connected graphs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 529-535. doi: 10.1007/s10587-015-0191-4

[1] Biggs, N.: Algebraic Graph Theory. Cambridge University Press Cambridge (1974). | MR | Zbl

[2] Das, K. Ch., Gutman, I., Çevik, A. S., Zhou, B.: On Laplacian energy. MATCH Commun. Math. Comput. Chem. 70 (2013), 689-696. | MR | Zbl

[3] Diaz, J. B., Matcalf, F. T.: Stronger forms of a class of inequalities of G. Pólya-G. Szegő and L. V. Kantorovich. Bull. Am. Math. Soc. 69 (1963), 415-418. | DOI | MR

[4] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 436 (2012), 3672-3683. | DOI | MR | Zbl

[5] Edwards, C. S.: The largest vertex degree sum for a triangle in a graph. Bull. Lond. Math. Soc. 9 (1977), 203-208. | DOI | MR | Zbl

[6] Fath-Tabar, G. H., Ashrafi, A. R.: Some remarks on Laplacian eigenvalues and Laplacian energy of graphs. Math. Commun. 15 (2010), 443-451. | MR | Zbl

[7] Fritsher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl. 435 (2011), 371-399. | MR

[8] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs. Linear Algebra Appl. 416 (2006), 68-74. | DOI | MR | Zbl

[9] Gutman, I., Das, K. Ch.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. | MR | Zbl

[10] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. | DOI

[11] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. | DOI | MR | Zbl

[12] Li, R.: Inequalities on vertex degrees, eigenvalues and (singless) Laplacian eigenvalues of graphs. Int. Math. Forum 5 (2010), 1855-1860. | MR

[13] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl

[14] Ozeki, N.: On the estimation of the inequality by the maximum, or minimum values. J. College Arts Sci. Chiba Univ. Japanese 5 (1968), 199-203. | MR

[15] Rojo, O., Soto, R., Rojo, H.: Bounds for sums of eigenvalues and applications. Comput. Math. Appl. 39 (2000), 1-15. | DOI | MR | Zbl

[16] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs. Appl. Math. Lett. 25 (2012), 1245-1250. | DOI | MR | Zbl

[17] You, Z., Liu, B.: The Laplacian spread of graphs. Czech. Math. J. 62 (2012), 155-168. | DOI | MR | Zbl

[18] Zhou, B.: On Laplacian eigenvalues of a graph. Z. Naturforsch. 59a (2004), 181-184. | DOI

Cité par Sources :