Keywords: Laplacian eigenvalues; linear spread; ratio spread
@article{10_1007_s10587_015_0191_4,
author = {Milovanovi\'c, Igor \v{Z}. and Milovanovi\'c, Emina I. and Glogi\'c, Edin},
title = {On {Laplacian} eigenvalues of connected graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {529--535},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0191-4},
mrnumber = {3360442},
zbl = {06486962},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0191-4/}
}
TY - JOUR AU - Milovanović, Igor Ž. AU - Milovanović, Emina I. AU - Glogić, Edin TI - On Laplacian eigenvalues of connected graphs JO - Czechoslovak Mathematical Journal PY - 2015 SP - 529 EP - 535 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0191-4/ DO - 10.1007/s10587-015-0191-4 LA - en ID - 10_1007_s10587_015_0191_4 ER -
%0 Journal Article %A Milovanović, Igor Ž. %A Milovanović, Emina I. %A Glogić, Edin %T On Laplacian eigenvalues of connected graphs %J Czechoslovak Mathematical Journal %D 2015 %P 529-535 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0191-4/ %R 10.1007/s10587-015-0191-4 %G en %F 10_1007_s10587_015_0191_4
Milovanović, Igor Ž.; Milovanović, Emina I.; Glogić, Edin. On Laplacian eigenvalues of connected graphs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 529-535. doi: 10.1007/s10587-015-0191-4
[1] Biggs, N.: Algebraic Graph Theory. Cambridge University Press Cambridge (1974). | MR | Zbl
[2] Das, K. Ch., Gutman, I., Çevik, A. S., Zhou, B.: On Laplacian energy. MATCH Commun. Math. Comput. Chem. 70 (2013), 689-696. | MR | Zbl
[3] Diaz, J. B., Matcalf, F. T.: Stronger forms of a class of inequalities of G. Pólya-G. Szegő and L. V. Kantorovich. Bull. Am. Math. Soc. 69 (1963), 415-418. | DOI | MR
[4] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 436 (2012), 3672-3683. | DOI | MR | Zbl
[5] Edwards, C. S.: The largest vertex degree sum for a triangle in a graph. Bull. Lond. Math. Soc. 9 (1977), 203-208. | DOI | MR | Zbl
[6] Fath-Tabar, G. H., Ashrafi, A. R.: Some remarks on Laplacian eigenvalues and Laplacian energy of graphs. Math. Commun. 15 (2010), 443-451. | MR | Zbl
[7] Fritsher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl. 435 (2011), 371-399. | MR
[8] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs. Linear Algebra Appl. 416 (2006), 68-74. | DOI | MR | Zbl
[9] Gutman, I., Das, K. Ch.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. | MR | Zbl
[10] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. | DOI
[11] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. | DOI | MR | Zbl
[12] Li, R.: Inequalities on vertex degrees, eigenvalues and (singless) Laplacian eigenvalues of graphs. Int. Math. Forum 5 (2010), 1855-1860. | MR
[13] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[14] Ozeki, N.: On the estimation of the inequality by the maximum, or minimum values. J. College Arts Sci. Chiba Univ. Japanese 5 (1968), 199-203. | MR
[15] Rojo, O., Soto, R., Rojo, H.: Bounds for sums of eigenvalues and applications. Comput. Math. Appl. 39 (2000), 1-15. | DOI | MR | Zbl
[16] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs. Appl. Math. Lett. 25 (2012), 1245-1250. | DOI | MR | Zbl
[17] You, Z., Liu, B.: The Laplacian spread of graphs. Czech. Math. J. 62 (2012), 155-168. | DOI | MR | Zbl
[18] Zhou, B.: On Laplacian eigenvalues of a graph. Z. Naturforsch. 59a (2004), 181-184. | DOI
Cité par Sources :