Fiber product preserving bundle functors as modified vertical Weil functors
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 517-528
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the concept of modified vertical Weil functors on the category $\mathcal {F}\mathcal {M}_m$ of fibred manifolds with $m$-dimensional bases and their fibred maps with embeddings as base maps. Then we describe all fiber product preserving bundle functors on $\mathcal {F}\mathcal {M}_m$ in terms of modified vertical Weil functors. The construction of modified vertical Weil functors is an (almost direct) generalization of the usual vertical Weil functor. Namely, in the construction of the usual vertical Weil functors, we replace the usual Weil functors $T^A$ corresponding to Weil algebras $A$ by the so called modified Weil functors $T^A$ corresponding to Weil algebra bundle functors $A$ on the category $\mathcal {M}_m$ of $m$-dimensional manifolds and their embeddings.
We introduce the concept of modified vertical Weil functors on the category $\mathcal {F}\mathcal {M}_m$ of fibred manifolds with $m$-dimensional bases and their fibred maps with embeddings as base maps. Then we describe all fiber product preserving bundle functors on $\mathcal {F}\mathcal {M}_m$ in terms of modified vertical Weil functors. The construction of modified vertical Weil functors is an (almost direct) generalization of the usual vertical Weil functor. Namely, in the construction of the usual vertical Weil functors, we replace the usual Weil functors $T^A$ corresponding to Weil algebras $A$ by the so called modified Weil functors $T^A$ corresponding to Weil algebra bundle functors $A$ on the category $\mathcal {M}_m$ of $m$-dimensional manifolds and their embeddings.
DOI : 10.1007/s10587-015-0190-5
Classification : 58A05, 58A20, 58A32
Keywords: Weil algebra; Weil functor; vertical Weil functor; Weil algebra bundle functor; modified Weil functor; modified vertical Weil functor; bundle functor; fiber product preserving bundle functor; natural transformation
@article{10_1007_s10587_015_0190_5,
     author = {Mikulski, W{\l}odzimierz M.},
     title = {Fiber product preserving bundle functors as modified vertical {Weil} functors},
     journal = {Czechoslovak Mathematical Journal},
     pages = {517--528},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0190-5},
     mrnumber = {3360441},
     zbl = {06486961},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0190-5/}
}
TY  - JOUR
AU  - Mikulski, Włodzimierz M.
TI  - Fiber product preserving bundle functors as modified vertical Weil functors
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 517
EP  - 528
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0190-5/
DO  - 10.1007/s10587-015-0190-5
LA  - en
ID  - 10_1007_s10587_015_0190_5
ER  - 
%0 Journal Article
%A Mikulski, Włodzimierz M.
%T Fiber product preserving bundle functors as modified vertical Weil functors
%J Czechoslovak Mathematical Journal
%D 2015
%P 517-528
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0190-5/
%R 10.1007/s10587-015-0190-5
%G en
%F 10_1007_s10587_015_0190_5
Mikulski, Włodzimierz M. Fiber product preserving bundle functors as modified vertical Weil functors. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 517-528. doi: 10.1007/s10587-015-0190-5

[1] Doupovec, M., Kolář, I.: Iteration of fiber product preserving bundle functors. Monatsh. Math. 134 (2001), 39-50. | DOI | MR

[2] Eck, D. J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. | DOI | MR | Zbl

[3] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. | MR | Zbl

[4] Kolář, I.: Weil bundles as generalized jet spaces. Handbook of Global Analysis Elsevier Amsterdam (2008), 625-664 D. Krupka et al. | MR

[5] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Berlin (1993). | MR

[6] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors. Differ. Geom. Appl. 11 (1999), 105-115. | DOI | MR

[7] Kurek, J., Mikulski, W. M.: Fiber product preserving bundle functors of vertical type. Differential Geom. Appl. 35 (2014), 150-155. | DOI | MR

[8] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 69-89. | DOI | MR | Zbl

[9] Weil, A.: Théorie des points proches sur les variétés différentiables. Géométrie différentielle Colloques Internat. Centre Nat. Rech. Sci. 52 Paris French (1953), 111-117. | MR | Zbl

Cité par Sources :