Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 493-516
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Omega \subset \mathbb R^n$ be a domain and let $\alpha $. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^{\alpha }L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^{{n}/{(n-1-\alpha )}})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. \endgraf Our main result is Theorem \ref {lions4} where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula $$ P:=(1-\|\Phi (|\nabla u|)\|_{L^1(\mathbb R^n)})^{-{1}/{(n-1)}}. $$
DOI :
10.1007/s10587-015-0189-y
Classification :
26D10, 46E30, 46E35
Keywords: Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle
Keywords: Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle
@article{10_1007_s10587_015_0189_y,
author = {\v{C}ern\'y, Robert},
title = {Concentration-Compactness {Principle} for embedding into multiple exponential spaces on unbounded domains},
journal = {Czechoslovak Mathematical Journal},
pages = {493--516},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2015},
doi = {10.1007/s10587-015-0189-y},
mrnumber = {3360440},
zbl = {06486960},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/}
}
TY - JOUR AU - Černý, Robert TI - Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains JO - Czechoslovak Mathematical Journal PY - 2015 SP - 493 EP - 516 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/ DO - 10.1007/s10587-015-0189-y LA - en ID - 10_1007_s10587_015_0189_y ER -
%0 Journal Article %A Černý, Robert %T Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains %J Czechoslovak Mathematical Journal %D 2015 %P 493-516 %V 65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/ %R 10.1007/s10587-015-0189-y %G en %F 10_1007_s10587_015_0189_y
Černý, Robert. Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 493-516. doi: 10.1007/s10587-015-0189-y
Cité par Sources :