Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 493-516.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Omega \subset \mathbb R^n$ be a domain and let $\alpha $. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^{\alpha }L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^{{n}/{(n-1-\alpha )}})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. \endgraf Our main result is Theorem \ref {lions4} where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula $$ P:=(1-\|\Phi (|\nabla u|)\|_{L^1(\mathbb R^n)})^{-{1}/{(n-1)}}. $$
DOI : 10.1007/s10587-015-0189-y
Classification : 26D10, 46E30, 46E35
Keywords: Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle
@article{10_1007_s10587_015_0189_y,
     author = {\v{C}ern\'y, Robert},
     title = {Concentration-Compactness {Principle} for embedding into multiple exponential spaces on unbounded domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {493--516},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2015},
     doi = {10.1007/s10587-015-0189-y},
     mrnumber = {3360440},
     zbl = {06486960},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/}
}
TY  - JOUR
AU  - Černý, Robert
TI  - Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 493
EP  - 516
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/
DO  - 10.1007/s10587-015-0189-y
LA  - en
ID  - 10_1007_s10587_015_0189_y
ER  - 
%0 Journal Article
%A Černý, Robert
%T Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
%J Czechoslovak Mathematical Journal
%D 2015
%P 493-516
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/
%R 10.1007/s10587-015-0189-y
%G en
%F 10_1007_s10587_015_0189_y
Černý, Robert. Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 493-516. doi : 10.1007/s10587-015-0189-y. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/

Cité par Sources :