Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 493-516
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Omega \subset \mathbb R^n$ be a domain and let $\alpha
Let $\Omega \subset \mathbb R^n$ be a domain and let $\alpha $. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^{\alpha }L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^{{n}/{(n-1-\alpha )}})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. \endgraf Our main result is Theorem \ref {lions4} where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula $$ P:=(1-\|\Phi (|\nabla u|)\|_{L^1(\mathbb R^n)})^{-{1}/{(n-1)}}. $$
DOI : 10.1007/s10587-015-0189-y
Classification : 26D10, 46E30, 46E35
Keywords: Sobolev space; Orlicz-Sobolev space; Moser-Trudinger inequality; sharp constant; concentration-compactness principle
@article{10_1007_s10587_015_0189_y,
     author = {\v{C}ern\'y, Robert},
     title = {Concentration-Compactness {Principle} for embedding into multiple exponential spaces on unbounded domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {493--516},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0189-y},
     mrnumber = {3360440},
     zbl = {06486960},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/}
}
TY  - JOUR
AU  - Černý, Robert
TI  - Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 493
EP  - 516
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/
DO  - 10.1007/s10587-015-0189-y
LA  - en
ID  - 10_1007_s10587_015_0189_y
ER  - 
%0 Journal Article
%A Černý, Robert
%T Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
%J Czechoslovak Mathematical Journal
%D 2015
%P 493-516
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0189-y/
%R 10.1007/s10587-015-0189-y
%G en
%F 10_1007_s10587_015_0189_y
Černý, Robert. Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 493-516. doi: 10.1007/s10587-015-0189-y

[1] Adachi, S., Tanaka, K.: Trudinger type inequalities in $\mathbb R^N$ and their best exponents. Proc. Am. Math. Soc. 128 2051-2057 (2000). | DOI | MR

[2] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). | MR | Zbl

[3] Battaglia, L., Mancini, G.: Remarks on the Moser-Trudinger inequality. Adv. Nonlinear Anal. 2 389-425 (2013). | MR | Zbl

[4] Carleson, L., Chang, S.-Y. A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math., II. Sér. 110 113-127 (1986), French summary. | MR

[5] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 165-198 (2012). | MR | Zbl

[6] Černý, R.: Generalized Moser-Trudinger inequality for unbounded domains and its application. NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). | DOI | MR | Zbl

[7] Černý, R.: Note on the Concentration-compactness principle for generalized Moser-Trudinger inequalities. Cent. Eur. J. Math. 10 590-602 (2012). | DOI | MR | Zbl

[8] Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl. (4) 192 225-243 (2013). | DOI | MR

[9] Černý, R., Gurka, P., Hencl, S.: Concentration-compactness principle for generalized Trudinger inequalities. Z. Anal. Anwend. 30 355-375 (2011). | DOI | MR | Zbl

[10] Černý, R., Gurka, P., Hencl, S.: On the Dirichlet problem for the $n,\alpha$-Laplacian with the nonlinearity in the critical growth range. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). | DOI | MR | Zbl

[11] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces. Czech. Math. J. 60 751-782 (2010). | DOI | MR | Zbl

[12] Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3 493-512 (1995). | DOI | MR | Zbl

[13] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 39-65 (1996). | DOI | MR | Zbl

[14] Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B.: Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growt hrange. Calc. Var. Partial Differ. Equ. 3 139-153 (1995). | DOI | MR

[15] 'O, J. M. do: $N$-Laplacian equations in $\mathbb R^N$ with critical growth. Abstr. Appl. Anal. 2 301-315 (1997). | DOI | MR

[16] Ó, J. M. do, Souza, M. de, Medeiros, E. de, Severo, U.: An improvement for the Trudinger-Moser inequality and applications. J. Differ. Equations 256 1317-1349 (2014). | DOI | MR

[17] Ó, J. M. do, Medeiros, E., Severo, U.: On a quasilinear nonhomogenous elliptic equation with critical growth in $\mathbb R^N$. J. Differ. Equations 246 1363-1386 (2009). | DOI | MR

[18] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings of logarithmic Bessel potential spaces. Proc. Am. Math. Soc. 126 2417-2425 (1998). | DOI | MR | Zbl

[19] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146 116-150 (1997). | DOI | MR | Zbl

[20] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. R. Soc. Edinb., Sect. A 126 995-1009 (1996). | DOI | MR | Zbl

[21] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 151-181 (1995). | MR | Zbl

[22] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 19-43 (1995). | DOI | MR | Zbl

[23] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 119-128 (1995). | MR | Zbl

[24] Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Am. Math. Soc. 124 561-565 (1996). | DOI | MR | Zbl

[25] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), 196-227. | DOI | MR | Zbl

[26] Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb R^n$. Indiana Univ. Math. J. 57 451-480 (2008). | DOI | MR

[27] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. | DOI | MR | Zbl

[28] Moser, J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20 1077-1092 (1971). | DOI | MR | Zbl

[29] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 391-467 (1999). | MR | Zbl

[30] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). | MR | Zbl

[31] Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb R^2$. J. Funct. Anal. 219 340-367 (2005). | DOI | MR

[32] Talenti, G.: Inequalities in rearrangement invariant function spaces. Nonlinear Analysis, Function Spaces and Applications. Vol. 5 M. Krbec et al. Proc. Conf., Praha, 1994. Prometheus Publishing House Praha (1994), 177-230. | MR | Zbl

[33] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 473-484 (1967). | MR | Zbl

Cité par Sources :