Evolution equations governed by Lipschitz continuous non-autonomous forms
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 475-491 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy \rlap {problem} $$ \dot {u} (t)+A(t)u(t)=f(t) \quad \text {for a.e.\ } t\in [0,T],\quad u(0)=u_0, $$ where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak {a}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$
We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy \rlap {problem} $$ \dot {u} (t)+A(t)u(t)=f(t) \quad \text {for a.e.\ } t\in [0,T],\quad u(0)=u_0, $$ where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak {a}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$
DOI : 10.1007/s10587-015-0188-z
Classification : 35B65, 35K45, 35K90, 47D06
Keywords: sesquilinear form; non-autonomous evolution equation; maximal regularity; convex set
@article{10_1007_s10587_015_0188_z,
     author = {Sani, Ahmed and Laasri, Hafida},
     title = {Evolution equations governed by {Lipschitz} continuous non-autonomous forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {475--491},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0188-z},
     mrnumber = {3360439},
     zbl = {06486959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0188-z/}
}
TY  - JOUR
AU  - Sani, Ahmed
AU  - Laasri, Hafida
TI  - Evolution equations governed by Lipschitz continuous non-autonomous forms
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 475
EP  - 491
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0188-z/
DO  - 10.1007/s10587-015-0188-z
LA  - en
ID  - 10_1007_s10587_015_0188_z
ER  - 
%0 Journal Article
%A Sani, Ahmed
%A Laasri, Hafida
%T Evolution equations governed by Lipschitz continuous non-autonomous forms
%J Czechoslovak Mathematical Journal
%D 2015
%P 475-491
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0188-z/
%R 10.1007/s10587-015-0188-z
%G en
%F 10_1007_s10587_015_0188_z
Sani, Ahmed; Laasri, Hafida. Evolution equations governed by Lipschitz continuous non-autonomous forms. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 475-491. doi: 10.1007/s10587-015-0188-z

[1] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96 Birkhäuser, Basel (2011). | MR | Zbl

[2] Arendt, W., Chill, R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523-539. | MR | Zbl

[3] Arendt, W., Dier, D., Laasri, H., Ouhabaz, E. M.: Maximal regularity for evolution equations governed by non-autonomous forms. Adv. Differ. Equ. 19 (2014), 1043-1066. | MR

[4] Arendt, W., Dier, D., Ouhabaz, E. M.: Invariance of convex sets for non-autonomous evolution equations governed by forms. J. Lond. Math. Soc., II. Ser. 89 (2014), 903-916. | DOI | MR

[5] Bardos, C.: A regularity theorem for parabolic equations. J. Funct. Anal. 7 (1971), 311-322. | DOI | MR | Zbl

[6] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer New York (2011). | MR | Zbl

[7] Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel. Collection Enseignement Masson, Paris French (1988). | MR | Zbl

[8] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups. Ulmer Seminare. Heft 16 (2011), 219-230.

[9] Haak, B., Maati, O. El: Maximal regularity for non-autonomous evolution equations. Version available at: | arXiv

[10] Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics Springer, Berlin (1992). | MR

[11] Laasri, H.: Problèmes d'évolution et intégrales produits dans les espaces de Banach. Thèse de Doctorat Faculté des science, Agadir (2012), French DOI 10.1007/s00208-015-1199-7. | DOI

[12] Laasri, H., El-Mennaoui, O.: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity. Czech. Math. J. 63 887-908 (2013). | DOI | MR

[13] Lions, J. L.: Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften 111 Springer, Berlin French (1961). | MR | Zbl

[14] Ouhabaz, E. M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). | MR | Zbl

[15] Ouhabaz, E. M.: Invariance of closed convex sets and domination criteria for semigroups. Potential Anal. 5 (1996), 611-625. | DOI | MR | Zbl

[16] Ouhabaz, E. M., Spina, C.: Maximal regularity for non-autonomous Schrödinger type equations. J. Differ. Equations 248 (2010), 1668-1683. | DOI | MR | Zbl

[17] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49, AMS Providence (1997). | MR | Zbl

[18] Slavík, A.: Product Integration, Its History and Applications. Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1 Matfyzpress, Praha (2007). | MR | Zbl

[19] Tanabe, H.: Equations of Evolution. Monographs and Studies in Mathematics 6 Pitman, London (1979). | MR | Zbl

[20] Thomaschewski, S.: Form Methods for Autonomous and Non-Autonomous Cauchy Problems. PhD Thesis, Universität Ulm (2003).

Cité par Sources :