Keywords: Sobolev space; metric measure space; Sobolev's inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent
@article{10_1007_s10587_015_0187_0,
author = {Ohno, Takao and Shimomura, Tetsu},
title = {Musielak-Orlicz-Sobolev spaces on metric measure spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {435--474},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0187-0},
mrnumber = {3360438},
zbl = {06486958},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0187-0/}
}
TY - JOUR AU - Ohno, Takao AU - Shimomura, Tetsu TI - Musielak-Orlicz-Sobolev spaces on metric measure spaces JO - Czechoslovak Mathematical Journal PY - 2015 SP - 435 EP - 474 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0187-0/ DO - 10.1007/s10587-015-0187-0 LA - en ID - 10_1007_s10587_015_0187_0 ER -
%0 Journal Article %A Ohno, Takao %A Shimomura, Tetsu %T Musielak-Orlicz-Sobolev spaces on metric measure spaces %J Czechoslovak Mathematical Journal %D 2015 %P 435-474 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0187-0/ %R 10.1007/s10587-015-0187-0 %G en %F 10_1007_s10587_015_0187_0
Ohno, Takao; Shimomura, Tetsu. Musielak-Orlicz-Sobolev spaces on metric measure spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 435-474. doi: 10.1007/s10587-015-0187-0
[1] Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand. 116 (2015), 5-22. | DOI | MR
[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1996). | MR
[3] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65 Academic Press, New York (1975). | MR | Zbl
[4] ssaoui, N. Aï: Another extension of Orlicz-Sobolev spaces to metric spaces. Abstr. Appl. Anal. 2004 (2004), 1-26. | MR
[5] ssaoui, N. Aï: Strongly nonlinear potential theory of metric spaces. Abstr. Appl. Anal. 7 (2002), 357-374. | DOI | MR
[6] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17 European Mathematical Society, Zürich (2011). | MR | Zbl
[7] Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106 (1993), 77-92. | MR | Zbl
[8] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. | DOI | MR | Zbl
[9] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). | MR | Zbl
[10] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Corrections to: ``The maximal function on variable {$L^p$} spaces''. Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249 Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR
[11] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657-700. | DOI | MR
[12] Diening, L.: Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}. Math. Inequal. Appl. 7 (2004), 245-253. | MR | Zbl
[13] Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces {$L^{p(\cdot)}$} and {$W^{k,p(\cdot)}$}. Math. Nachr. 268 (2004), 31-43. | DOI | MR | Zbl
[14] Diening, L., Harjulehto, P., Hästö, P., R\ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR
[15] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1992). | MR | Zbl
[16] Fan, X.: Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution method. J. Math. Anal. Appl. 386 (2012), 593-604. | DOI | MR | Zbl
[17] Fan, X., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 163-175. | DOI | MR | Zbl
[18] Franchi, B., Lu, G., Wheeden, R. L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type. Int. Math. Res. Not. 1996 (1996), 1-14. | DOI | MR | Zbl
[19] Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Variable exponent spaces on metric measure spaces. More Progresses in Analysis. Proceedings of the 5th International ISAAC Congress, Catania, Italy, 2005 World Scientific Hackensack (2009), 107-121 H. G. W. Begehr et al. | Zbl
[20] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. | MR | Zbl
[21] Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415. | Zbl
[22] Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14 (1998), 601-622. | DOI | MR | Zbl
[23] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), no. 688, 101 pages. | MR | Zbl
[24] Harjulehto, P., Hästö, P.: A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Complut. 17 (2004), 129-146. | DOI | MR | Zbl
[25] Harjulehto, P., Hästö, P.: Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn., Math. 29 (2004), 295-306. | MR | Zbl
[26] Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: Sobolev capacity on the space {$W^{1,p(\cdot)}(\Bbb R^n)$}. J. Funct. Spaces Appl. 1 (2003), 17-33. | MR
[27] Harjulehto, P., Hästö, P., Koskenoja, M.: Properties of capacities in variable exponent Sobolev spaces. J. Anal. Appl. 5 (2007), 71-92. | MR | Zbl
[28] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), 591-609. | DOI | MR
[29] Harjulehto, P., Hästö, P., Latvala, V.: Lebesgue points in variable exponent Sobolev spaces on metric measure spaces. Zb. Pr. Inst. Mat. NAN Ukr. 1 (2004), 87-99. | MR | Zbl
[30] Harjulehto, P., Hästö, P., Martio, O.: Fuglede's theorem in variable exponent Sobolev space. Collect. Math. 55 (2004), 315-324. | MR | Zbl
[31] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Sobolev spaces on metric measure spaces. Funct. Approximatio, Comment. Math. 36 (2006), 79-94. | DOI | MR | Zbl
[32] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2005), 87-104. | MR | Zbl
[33] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext Springer, New York (2001). | MR | Zbl
[34] Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61. | DOI | MR | Zbl
[35] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. | DOI | MR | Zbl
[36] Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18 (2002), 685-700. | DOI | MR | Zbl
[37] Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces. Proceedings on Analysis and Geometry Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat. Novosibirsk (2000), 285-290 S. K. Vodop'yanov Russian. | MR | Zbl
[38] Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn., Math. 21 (1996), 367-382. | MR | Zbl
[39] Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted {$L^{p(x)}$} spaces. Rev. Mat. Iberoam. 20 (2004), 493-515. | DOI | MR | Zbl
[40] Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwend. 22 (2003), 889-910. | MR | Zbl
[41] Lewis, J. L.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equations 18 (1993), 1515-1537. | DOI | MR | Zbl
[42] Maeda, F.-Y., Mizuta, Y., Ohno, T.: Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}. Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. | DOI | MR | Zbl
[43] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Approximate identities and Young type inequalities in Musielak-Orlicz spaces. Czech. Math. J. 63 (2013), 933-948. | DOI | MR
[44] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. | DOI | MR | Zbl
[45] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Mean continuity for potentials of functions in Musielak-Orlicz spaces. Potential Theory and Its Related Fields RIMS Kôkyûroku Bessatsu B43 Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2013), 81-100 K. Hirata. | MR | Zbl
[46] McShane, E. J.: Extension of range of functions. Bull. Am. Math. Soc. 40 (1934), 837-842. | DOI | MR | Zbl
[47] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}. J. Math. Anal. Appl. 345 (2008), 70-85. | DOI | MR | Zbl
[48] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions. Tohoku Math. J. (2) 61 (2009), 225-240. | DOI | MR | Zbl
[49] Mizuta, Y., Shimomura, T.: Continuity of Sobolev functions of variable exponent on metric spaces. Proc. Japan Acad., Ser. A 80 (2004), 96-99. | MR | Zbl
[50] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034 Springer, Berlin (1983). | MR | Zbl
[51] Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16 (2000), 243-279. | DOI | MR | Zbl
[52] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). | MR | Zbl
[53] Tuominen, H.: Orlicz-Sobolev spaces on metric measure spaces. Ann. Acad. Sci. Fenn. Math. Diss. (2004), 135 86 pages. | MR | Zbl
[54] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation Graduate Texts in Mathematics 120 Springer, Berlin (1989). | MR | Zbl
Cité par Sources :