Musielak-Orlicz-Sobolev spaces on metric measure spaces
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 435-474 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.
Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev's inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.
DOI : 10.1007/s10587-015-0187-0
Classification : 31B15, 31E05, 46E35
Keywords: Sobolev space; metric measure space; Sobolev's inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent
@article{10_1007_s10587_015_0187_0,
     author = {Ohno, Takao and Shimomura, Tetsu},
     title = {Musielak-Orlicz-Sobolev spaces on metric measure spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {435--474},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0187-0},
     mrnumber = {3360438},
     zbl = {06486958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0187-0/}
}
TY  - JOUR
AU  - Ohno, Takao
AU  - Shimomura, Tetsu
TI  - Musielak-Orlicz-Sobolev spaces on metric measure spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 435
EP  - 474
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0187-0/
DO  - 10.1007/s10587-015-0187-0
LA  - en
ID  - 10_1007_s10587_015_0187_0
ER  - 
%0 Journal Article
%A Ohno, Takao
%A Shimomura, Tetsu
%T Musielak-Orlicz-Sobolev spaces on metric measure spaces
%J Czechoslovak Mathematical Journal
%D 2015
%P 435-474
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0187-0/
%R 10.1007/s10587-015-0187-0
%G en
%F 10_1007_s10587_015_0187_0
Ohno, Takao; Shimomura, Tetsu. Musielak-Orlicz-Sobolev spaces on metric measure spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 435-474. doi: 10.1007/s10587-015-0187-0

[1] Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand. 116 (2015), 5-22. | DOI | MR

[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1996). | MR

[3] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65 Academic Press, New York (1975). | MR | Zbl

[4] ssaoui, N. Aï: Another extension of Orlicz-Sobolev spaces to metric spaces. Abstr. Appl. Anal. 2004 (2004), 1-26. | MR

[5] ssaoui, N. Aï: Strongly nonlinear potential theory of metric spaces. Abstr. Appl. Anal. 7 (2002), 357-374. | DOI | MR

[6] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17 European Mathematical Society, Zürich (2011). | MR | Zbl

[7] Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106 (1993), 77-92. | MR | Zbl

[8] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. | DOI | MR | Zbl

[9] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). | MR | Zbl

[10] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Corrections to: ``The maximal function on variable {$L^p$} spaces''. Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249 Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR

[11] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657-700. | DOI | MR

[12] Diening, L.: Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}. Math. Inequal. Appl. 7 (2004), 245-253. | MR | Zbl

[13] Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces {$L^{p(\cdot)}$} and {$W^{k,p(\cdot)}$}. Math. Nachr. 268 (2004), 31-43. | DOI | MR | Zbl

[14] Diening, L., Harjulehto, P., Hästö, P., R\ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR

[15] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1992). | MR | Zbl

[16] Fan, X.: Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution method. J. Math. Anal. Appl. 386 (2012), 593-604. | DOI | MR | Zbl

[17] Fan, X., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 163-175. | DOI | MR | Zbl

[18] Franchi, B., Lu, G., Wheeden, R. L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type. Int. Math. Res. Not. 1996 (1996), 1-14. | DOI | MR | Zbl

[19] Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Variable exponent spaces on metric measure spaces. More Progresses in Analysis. Proceedings of the 5th International ISAAC Congress, Catania, Italy, 2005 World Scientific Hackensack (2009), 107-121 H. G. W. Begehr et al. | Zbl

[20] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. | MR | Zbl

[21] Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415. | Zbl

[22] Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14 (1998), 601-622. | DOI | MR | Zbl

[23] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), no. 688, 101 pages. | MR | Zbl

[24] Harjulehto, P., Hästö, P.: A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Complut. 17 (2004), 129-146. | DOI | MR | Zbl

[25] Harjulehto, P., Hästö, P.: Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn., Math. 29 (2004), 295-306. | MR | Zbl

[26] Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: Sobolev capacity on the space {$W^{1,p(\cdot)}(\Bbb R^n)$}. J. Funct. Spaces Appl. 1 (2003), 17-33. | MR

[27] Harjulehto, P., Hästö, P., Koskenoja, M.: Properties of capacities in variable exponent Sobolev spaces. J. Anal. Appl. 5 (2007), 71-92. | MR | Zbl

[28] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), 591-609. | DOI | MR

[29] Harjulehto, P., Hästö, P., Latvala, V.: Lebesgue points in variable exponent Sobolev spaces on metric measure spaces. Zb. Pr. Inst. Mat. NAN Ukr. 1 (2004), 87-99. | MR | Zbl

[30] Harjulehto, P., Hästö, P., Martio, O.: Fuglede's theorem in variable exponent Sobolev space. Collect. Math. 55 (2004), 315-324. | MR | Zbl

[31] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Sobolev spaces on metric measure spaces. Funct. Approximatio, Comment. Math. 36 (2006), 79-94. | DOI | MR | Zbl

[32] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2005), 87-104. | MR | Zbl

[33] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext Springer, New York (2001). | MR | Zbl

[34] Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61. | DOI | MR | Zbl

[35] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. | DOI | MR | Zbl

[36] Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18 (2002), 685-700. | DOI | MR | Zbl

[37] Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces. Proceedings on Analysis and Geometry Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat. Novosibirsk (2000), 285-290 S. K. Vodop'yanov Russian. | MR | Zbl

[38] Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn., Math. 21 (1996), 367-382. | MR | Zbl

[39] Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted {$L^{p(x)}$} spaces. Rev. Mat. Iberoam. 20 (2004), 493-515. | DOI | MR | Zbl

[40] Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwend. 22 (2003), 889-910. | MR | Zbl

[41] Lewis, J. L.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equations 18 (1993), 1515-1537. | DOI | MR | Zbl

[42] Maeda, F.-Y., Mizuta, Y., Ohno, T.: Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}. Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. | DOI | MR | Zbl

[43] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Approximate identities and Young type inequalities in Musielak-Orlicz spaces. Czech. Math. J. 63 (2013), 933-948. | DOI | MR

[44] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. | DOI | MR | Zbl

[45] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Mean continuity for potentials of functions in Musielak-Orlicz spaces. Potential Theory and Its Related Fields RIMS Kôkyûroku Bessatsu B43 Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2013), 81-100 K. Hirata. | MR | Zbl

[46] McShane, E. J.: Extension of range of functions. Bull. Am. Math. Soc. 40 (1934), 837-842. | DOI | MR | Zbl

[47] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}. J. Math. Anal. Appl. 345 (2008), 70-85. | DOI | MR | Zbl

[48] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions. Tohoku Math. J. (2) 61 (2009), 225-240. | DOI | MR | Zbl

[49] Mizuta, Y., Shimomura, T.: Continuity of Sobolev functions of variable exponent on metric spaces. Proc. Japan Acad., Ser. A 80 (2004), 96-99. | MR | Zbl

[50] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034 Springer, Berlin (1983). | MR | Zbl

[51] Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16 (2000), 243-279. | DOI | MR | Zbl

[52] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). | MR | Zbl

[53] Tuominen, H.: Orlicz-Sobolev spaces on metric measure spaces. Ann. Acad. Sci. Fenn. Math. Diss. (2004), 135 86 pages. | MR | Zbl

[54] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation Graduate Texts in Mathematics 120 Springer, Berlin (1989). | MR | Zbl

Cité par Sources :