On solvability of finite groups with some $ss$-supplemented subgroups
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 427-433
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel's paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.
A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel's paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.
DOI : 10.1007/s10587-015-0186-1
Classification : 20D10, 20D20, 20D40
Keywords: $ss$-supplemented subgroup; solvable group; supersolvable group
@article{10_1007_s10587_015_0186_1,
     author = {Lu, Jiakuan and Qiu, Yanyan},
     title = {On solvability of finite groups with some $ss$-supplemented subgroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {427--433},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0186-1},
     mrnumber = {3360437},
     zbl = {06486957},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0186-1/}
}
TY  - JOUR
AU  - Lu, Jiakuan
AU  - Qiu, Yanyan
TI  - On solvability of finite groups with some $ss$-supplemented subgroups
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 427
EP  - 433
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0186-1/
DO  - 10.1007/s10587-015-0186-1
LA  - en
ID  - 10_1007_s10587_015_0186_1
ER  - 
%0 Journal Article
%A Lu, Jiakuan
%A Qiu, Yanyan
%T On solvability of finite groups with some $ss$-supplemented subgroups
%J Czechoslovak Mathematical Journal
%D 2015
%P 427-433
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0186-1/
%R 10.1007/s10587-015-0186-1
%G en
%F 10_1007_s10587_015_0186_1
Lu, Jiakuan; Qiu, Yanyan. On solvability of finite groups with some $ss$-supplemented subgroups. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 427-433. doi: 10.1007/s10587-015-0186-1

[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234-246. | DOI | MR | Zbl

[2] Asaad, M., Ramadan, M.: Finite groups whose minimal subgroups are {$c$}-supplemented. Commun. Algebra 36 (2008), 1034-1040. | DOI | MR | Zbl

[3] Ballester-Bolinches, A., Wang, Y., Xiuyun, G.: {$c$}-supplemented subgroups of finite groups. Glasg. Math. J. 42 (2000), 383-389. | DOI | MR | Zbl

[4] Ballester-Bolinches, A., Xiuyun, G.: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161-166. | DOI | MR | Zbl

[5] Doerk, K., Hawkes, T. O.: Finite Soluble Groups. de Gruyter Expositions in Mathematics 4 Walter de Gruyter, Berlin (1992). | MR | Zbl

[6] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics Harper & Row, Publishers, New York (1968). | MR | Zbl

[7] Guo, X., Lu, J.: On $ss$-supplemented subgroups of finite groups and their properties. Glasg. Math. J. 54 (2012), 481-491. | DOI | MR | Zbl

[8] Guralnick, R. M.: Subgroups of prime power index in a simple group. J. Algebra 81 (1983), 304-311. | DOI | MR | Zbl

[9] Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12 (1937), 198-200. | DOI | MR | Zbl

[10] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. | DOI | MR | Zbl

[11] Heliel, A. A.: A note on $c$-supplemented subgroups of finite groups. Commun. Algebra 42 (2014), 1650-1656. | DOI | MR

[12] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). | MR | Zbl

[13] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 German (1962), 205-221. | DOI | MR | Zbl

[14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of $ss$-quasinormality of some subgroups on the structure of finite groups. J. Algebra 319 (2008), 4275-4287. | DOI | MR | Zbl

[15] Li, Y., Li, B.: On minimal weakly $s$-supplemented subgroups of finite groups. J. Algebra Appl. 10 (2011), 811-820. | DOI | MR | Zbl

[16] Lu, J., Guo, X., Li, X.: The influence of minimal subgroups on the structure of finite groups. J. Algebra Appl. 12 (2013), Article No. 1250189, 8 pages. | MR | Zbl

[17] Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285-293. | DOI | MR | Zbl

[18] Wang, Y.: Finite groups with some subgroups of Sylow subgroups $c$-supplemented. J. Algebra 224 (2000), 467-478. | DOI | MR | Zbl

Cité par Sources :