Keywords: Hankel operator; Dixmier trace; Bergman space
@article{10_1007_s10587_015_0185_2,
author = {Tytgat, Romaric},
title = {Espace de {Dixmier} des op\'erateurs de {Hankel} sur les espaces de {Bergman} \`a poids},
journal = {Czechoslovak Mathematical Journal},
pages = {399--426},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0185-2},
mrnumber = {3360436},
zbl = {06486956},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0185-2/}
}
TY - JOUR AU - Tytgat, Romaric TI - Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids JO - Czechoslovak Mathematical Journal PY - 2015 SP - 399 EP - 426 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0185-2/ DO - 10.1007/s10587-015-0185-2 LA - en ID - 10_1007_s10587_015_0185_2 ER -
%0 Journal Article %A Tytgat, Romaric %T Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids %J Czechoslovak Mathematical Journal %D 2015 %P 399-426 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0185-2/ %R 10.1007/s10587-015-0185-2 %G en %F 10_1007_s10587_015_0185_2
Tytgat, Romaric. Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 399-426. doi: 10.1007/s10587-015-0185-2
[1] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted Bergman spaces. Am. J. Math. 110 (1988), 989-1053. | DOI | MR | Zbl
[2] Arazy, J., Fisher, S. D., Peetre, J.: Möbius invariant function spaces. J. Reine Angew. Math. 363 (1985), 110-145. | MR | Zbl
[3] Axler, S.: The Bergman space, the Bloch space, and commutators of multiplication operators. Duke Math. J. 53 (1986), 315-332. | MR | Zbl
[4] Connes, A.: Noncommutative Geometry. Academic Press San Diego (1994). | MR | Zbl
[5] Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5 (1995), 174-243. | DOI | MR | Zbl
[6] Engliš, M., Guo, K., Zhang, G.: Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^{n}$. Proc. Am. Math. Soc. 137 (2009), 3669-3678. | DOI | MR
[7] Engliš, M., Rochberg, R.: The Dixmier trace of Hankel operators on the Bergman space. J. Funct. Anal. 257 (2009), 1445-1479. | DOI | MR | Zbl
[8] Gohberg, I. C., Kreĭn, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969). | DOI | MR | Zbl
[9] Li, S.-Y., Russo, B.: Hankel operators in the Dixmier class. C. R. Acad. Sci., Paris, Sér. I, Math. 325 (1997), 21-26. | DOI | MR | Zbl
[10] Luecking, D. H.: Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk. J. Funct. Anal. 110 (1992), 247-271. | DOI | MR | Zbl
[11] Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics 2 Clarendon Press, Oxford (1997). | MR | Zbl
[12] Pavlović, M.: Introduction to Function Spaces on the Disk. Posebna Izdanja Matematički Institut SANU, Belgrade (2004). | MR | Zbl
[13] Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics Springer, New York (2003). | MR | Zbl
[14] Rudin, W.: Real an Complex Analysis. McGraw-Hill Series in Higher Mathematics McGraw-Hill Book Company, New York (1966). | MR
[15] Seip, K., Youssfi, E. H.: Hankel operators on Fock spaces and related Bergman kernel estimates. J. Geom. Anal. 23 (2013), 170-201. | DOI | MR | Zbl
[16] Simon, B.: Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series 35 Cambridge University Press, Cambridge (1979). | MR | Zbl
[17] Tytgat, R.: Dixmier class of Hankel operators. J. Oper. Theory 72 (2014), 241-256 French. | DOI | MR
[18] Zhu, K.: Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball. New York J. Math. (electronic only) 13 (2007), 299-316. | MR | Zbl
[19] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl
[20] Zhu, K.: Analytic Besov spaces. J. Math. Anal. Appl. 157 (1991), 318-336. | DOI | MR | Zbl
[21] Zhu, K.: Operator Theory in Function Spaces. Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). | MR | Zbl
Cité par Sources :