Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^{p}_{a}$ ($1$, $p\neq 2$) are not supercyclic.
DOI :
10.1007/s10587-015-0184-3
Classification :
47A16, 47B33, 47B38
Keywords: supercyclicity; hypercyclic operator; semigroup; isometry
Keywords: supercyclicity; hypercyclic operator; semigroup; isometry
@article{10_1007_s10587_015_0184_3,
author = {Moradi, Abbas and Hedayatian, Karim and Khani Robati, Bahram and Ansari, Mohammad},
title = {Non supercyclic subsets of linear isometries on {Banach} spaces of analytic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {389--397},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2015},
doi = {10.1007/s10587-015-0184-3},
mrnumber = {3360435},
zbl = {06486955},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/}
}
TY - JOUR AU - Moradi, Abbas AU - Hedayatian, Karim AU - Khani Robati, Bahram AU - Ansari, Mohammad TI - Non supercyclic subsets of linear isometries on Banach spaces of analytic functions JO - Czechoslovak Mathematical Journal PY - 2015 SP - 389 EP - 397 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/ DO - 10.1007/s10587-015-0184-3 LA - en ID - 10_1007_s10587_015_0184_3 ER -
%0 Journal Article %A Moradi, Abbas %A Hedayatian, Karim %A Khani Robati, Bahram %A Ansari, Mohammad %T Non supercyclic subsets of linear isometries on Banach spaces of analytic functions %J Czechoslovak Mathematical Journal %D 2015 %P 389-397 %V 65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/ %R 10.1007/s10587-015-0184-3 %G en %F 10_1007_s10587_015_0184_3
Moradi, Abbas; Hedayatian, Karim; Khani Robati, Bahram; Ansari, Mohammad. Non supercyclic subsets of linear isometries on Banach spaces of analytic functions. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397. doi: 10.1007/s10587-015-0184-3
Cité par Sources :