Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^{p}_{a}$ ($1$, $p\neq 2$) are not supercyclic.
DOI : 10.1007/s10587-015-0184-3
Classification : 47A16, 47B33, 47B38
Keywords: supercyclicity; hypercyclic operator; semigroup; isometry
@article{10_1007_s10587_015_0184_3,
     author = {Moradi, Abbas and Hedayatian, Karim and Khani Robati, Bahram and Ansari, Mohammad},
     title = {Non supercyclic subsets of linear isometries on {Banach} spaces of analytic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {389--397},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2015},
     doi = {10.1007/s10587-015-0184-3},
     mrnumber = {3360435},
     zbl = {06486955},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/}
}
TY  - JOUR
AU  - Moradi, Abbas
AU  - Hedayatian, Karim
AU  - Khani Robati, Bahram
AU  - Ansari, Mohammad
TI  - Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 389
EP  - 397
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/
DO  - 10.1007/s10587-015-0184-3
LA  - en
ID  - 10_1007_s10587_015_0184_3
ER  - 
%0 Journal Article
%A Moradi, Abbas
%A Hedayatian, Karim
%A Khani Robati, Bahram
%A Ansari, Mohammad
%T Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
%J Czechoslovak Mathematical Journal
%D 2015
%P 389-397
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/
%R 10.1007/s10587-015-0184-3
%G en
%F 10_1007_s10587_015_0184_3
Moradi, Abbas; Hedayatian, Karim; Khani Robati, Bahram; Ansari, Mohammad. Non supercyclic subsets of linear isometries on Banach spaces of analytic functions. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397. doi : 10.1007/s10587-015-0184-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/

Cité par Sources :