Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^{p}_{a}$ ($1
Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^{p}_{a}$ ($1$, $p\neq 2$) are not supercyclic.
DOI : 10.1007/s10587-015-0184-3
Classification : 47A16, 47B33, 47B38
Keywords: supercyclicity; hypercyclic operator; semigroup; isometry
@article{10_1007_s10587_015_0184_3,
     author = {Moradi, Abbas and Hedayatian, Karim and Khani Robati, Bahram and Ansari, Mohammad},
     title = {Non supercyclic subsets of linear isometries on {Banach} spaces of analytic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {389--397},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0184-3},
     mrnumber = {3360435},
     zbl = {06486955},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/}
}
TY  - JOUR
AU  - Moradi, Abbas
AU  - Hedayatian, Karim
AU  - Khani Robati, Bahram
AU  - Ansari, Mohammad
TI  - Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 389
EP  - 397
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/
DO  - 10.1007/s10587-015-0184-3
LA  - en
ID  - 10_1007_s10587_015_0184_3
ER  - 
%0 Journal Article
%A Moradi, Abbas
%A Hedayatian, Karim
%A Khani Robati, Bahram
%A Ansari, Mohammad
%T Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
%J Czechoslovak Mathematical Journal
%D 2015
%P 389-397
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/
%R 10.1007/s10587-015-0184-3
%G en
%F 10_1007_s10587_015_0184_3
Moradi, Abbas; Hedayatian, Karim; Khani Robati, Bahram; Ansari, Mohammad. Non supercyclic subsets of linear isometries on Banach spaces of analytic functions. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397. doi: 10.1007/s10587-015-0184-3

[1] Ansari, S. I.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128 (1995), 374-383. | DOI | MR | Zbl

[2] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179 Cambridge University Press, Cambridge (2009). | MR | Zbl

[3] Guerrero, J. Becerra, Rodríguez-Palacios, A.: Transitivity of the norm on Banach spaces. Extr. Math. 17 (2002), 1-58. | MR

[4] Bonet, J., Lindström, M., Wolf, E.: Isometric weighted composition operators on weighted Banach spaces of type $H^\infty$. Proc. Am. Math. Soc. 136 (2008), 4267-4273. | DOI | MR | Zbl

[5] Bourdon, P. S., Feldman, N. S.: Somewhere dense orbits are everywhere dense. Indiana Univ. Math. J. 52 (2003), 811-819. | DOI | MR | Zbl

[6] Conejero, J. A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup. J. Funct. Anal. 244 (2007), 342-348. | DOI | MR | Zbl

[7] Conway, J. B.: Functions of One Complex Variable. Graduate Texts in Mathematics 11 Springer, New York (1978). | DOI | MR

[8] Copson, E. T.: Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics 55 Cambridge University Press, New York (1965). | MR | Zbl

[9] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 2: Vector-valued Function Spaces. Monographs and Surveys in Pure and Applied Mathematics 138 Chapman and Hall/CRC, Boca Raton (2007). | MR

[10] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 1: Function Spaces. Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). | MR

[11] Geng, L.-G., Zhou, Z.-H., Dong, X.-T.: Isometric composition operators on weighted Dirichlet-type spaces. J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 23, 6 pages. | MR | Zbl

[12] Greim, P., Jamison, J. E., Kamińska, A.: Almost transitivity of some function spaces. Math. Proc. Camb. Philos. Soc. 116 (1994), 475-488 corrigendum ibid. 121 191 (1997). | DOI | MR

[13] Hornor, W., Jamison, J. E.: Isometries of some Banach spaces of analytic functions. Integral Equations Oper. Theory 41 (2001), 410-425. | DOI | MR | Zbl

[14] Jarosz, K.: Any Banach space has an equivalent norm with trivial isometries. Isr. J. Math. 64 (1988), 49-56. | DOI | MR | Zbl

[15] Kitai, C.: Invariant Closed Sets for Linear Operators. ProQuest LLC, Ann Arbor University of Toronto Toronto, Canada (1982). | MR

[16] León-Saavedra, F., Müller, V.: Rotations of hypercyclic and supercyclic operators. Integral Equations Oper. Theory 50 (2004), 385-391. | DOI | MR | Zbl

[17] Martín, M. J., Vukotić, D.: Isometries of some classical function spaces among the composition operators. Recent Advances in Operator-Related Function Theory, Proc. Conf., Dublin, Ireland, 2004 A. L. Matheson et al. Contemp. Math. 393 American Mathematical Society, Providence (2006), 133-138. | MR | Zbl

[18] Novinger, W. P., Oberlin, D. M.: Linear isometries of some normed spaces of analytic functions. Can. J. Math. 37 (1985), 62-74. | DOI | MR | Zbl

[19] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. | DOI | MR | Zbl

Cité par Sources :