Keywords: supercyclicity; hypercyclic operator; semigroup; isometry
@article{10_1007_s10587_015_0184_3,
author = {Moradi, Abbas and Hedayatian, Karim and Khani Robati, Bahram and Ansari, Mohammad},
title = {Non supercyclic subsets of linear isometries on {Banach} spaces of analytic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {389--397},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0184-3},
mrnumber = {3360435},
zbl = {06486955},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/}
}
TY - JOUR AU - Moradi, Abbas AU - Hedayatian, Karim AU - Khani Robati, Bahram AU - Ansari, Mohammad TI - Non supercyclic subsets of linear isometries on Banach spaces of analytic functions JO - Czechoslovak Mathematical Journal PY - 2015 SP - 389 EP - 397 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/ DO - 10.1007/s10587-015-0184-3 LA - en ID - 10_1007_s10587_015_0184_3 ER -
%0 Journal Article %A Moradi, Abbas %A Hedayatian, Karim %A Khani Robati, Bahram %A Ansari, Mohammad %T Non supercyclic subsets of linear isometries on Banach spaces of analytic functions %J Czechoslovak Mathematical Journal %D 2015 %P 389-397 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0184-3/ %R 10.1007/s10587-015-0184-3 %G en %F 10_1007_s10587_015_0184_3
Moradi, Abbas; Hedayatian, Karim; Khani Robati, Bahram; Ansari, Mohammad. Non supercyclic subsets of linear isometries on Banach spaces of analytic functions. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 389-397. doi: 10.1007/s10587-015-0184-3
[1] Ansari, S. I.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128 (1995), 374-383. | DOI | MR | Zbl
[2] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179 Cambridge University Press, Cambridge (2009). | MR | Zbl
[3] Guerrero, J. Becerra, Rodríguez-Palacios, A.: Transitivity of the norm on Banach spaces. Extr. Math. 17 (2002), 1-58. | MR
[4] Bonet, J., Lindström, M., Wolf, E.: Isometric weighted composition operators on weighted Banach spaces of type $H^\infty$. Proc. Am. Math. Soc. 136 (2008), 4267-4273. | DOI | MR | Zbl
[5] Bourdon, P. S., Feldman, N. S.: Somewhere dense orbits are everywhere dense. Indiana Univ. Math. J. 52 (2003), 811-819. | DOI | MR | Zbl
[6] Conejero, J. A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup. J. Funct. Anal. 244 (2007), 342-348. | DOI | MR | Zbl
[7] Conway, J. B.: Functions of One Complex Variable. Graduate Texts in Mathematics 11 Springer, New York (1978). | DOI | MR
[8] Copson, E. T.: Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics 55 Cambridge University Press, New York (1965). | MR | Zbl
[9] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 2: Vector-valued Function Spaces. Monographs and Surveys in Pure and Applied Mathematics 138 Chapman and Hall/CRC, Boca Raton (2007). | MR
[10] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 1: Function Spaces. Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). | MR
[11] Geng, L.-G., Zhou, Z.-H., Dong, X.-T.: Isometric composition operators on weighted Dirichlet-type spaces. J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 23, 6 pages. | MR | Zbl
[12] Greim, P., Jamison, J. E., Kamińska, A.: Almost transitivity of some function spaces. Math. Proc. Camb. Philos. Soc. 116 (1994), 475-488 corrigendum ibid. 121 191 (1997). | DOI | MR
[13] Hornor, W., Jamison, J. E.: Isometries of some Banach spaces of analytic functions. Integral Equations Oper. Theory 41 (2001), 410-425. | DOI | MR | Zbl
[14] Jarosz, K.: Any Banach space has an equivalent norm with trivial isometries. Isr. J. Math. 64 (1988), 49-56. | DOI | MR | Zbl
[15] Kitai, C.: Invariant Closed Sets for Linear Operators. ProQuest LLC, Ann Arbor University of Toronto Toronto, Canada (1982). | MR
[16] León-Saavedra, F., Müller, V.: Rotations of hypercyclic and supercyclic operators. Integral Equations Oper. Theory 50 (2004), 385-391. | DOI | MR | Zbl
[17] Martín, M. J., Vukotić, D.: Isometries of some classical function spaces among the composition operators. Recent Advances in Operator-Related Function Theory, Proc. Conf., Dublin, Ireland, 2004 A. L. Matheson et al. Contemp. Math. 393 American Mathematical Society, Providence (2006), 133-138. | MR | Zbl
[18] Novinger, W. P., Oberlin, D. M.: Linear isometries of some normed spaces of analytic functions. Can. J. Math. 37 (1985), 62-74. | DOI | MR | Zbl
[19] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. | DOI | MR | Zbl
Cité par Sources :