Keywords: Banach space; approximation property; linear operator; homogeneous polynomial; holomorphic function
@article{10_1007_s10587_015_0181_6,
author = {Dineen, Se\'an and Mujica, Jorge},
title = {Banach spaces of homogeneous polynomials without the approximation property},
journal = {Czechoslovak Mathematical Journal},
pages = {367--374},
year = {2015},
volume = {65},
number = {2},
doi = {10.1007/s10587-015-0181-6},
mrnumber = {3360432},
zbl = {06486952},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0181-6/}
}
TY - JOUR AU - Dineen, Seán AU - Mujica, Jorge TI - Banach spaces of homogeneous polynomials without the approximation property JO - Czechoslovak Mathematical Journal PY - 2015 SP - 367 EP - 374 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0181-6/ DO - 10.1007/s10587-015-0181-6 LA - en ID - 10_1007_s10587_015_0181_6 ER -
%0 Journal Article %A Dineen, Seán %A Mujica, Jorge %T Banach spaces of homogeneous polynomials without the approximation property %J Czechoslovak Mathematical Journal %D 2015 %P 367-374 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0181-6/ %R 10.1007/s10587-015-0181-6 %G en %F 10_1007_s10587_015_0181_6
Dineen, Seán; Mujica, Jorge. Banach spaces of homogeneous polynomials without the approximation property. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 367-374. doi: 10.1007/s10587-015-0181-6
[1] Alencar, R.: On reflexivity and basis for {$P(^mE)$}. Proc. R. Ir. Acad., Sect. A 85 (1985), 131-138. | MR
[2] Arias, A., Farmer, J. D.: On the structure of tensor products of {$l_p$}-spaces. Pac. J. Math. 175 (1996), 13-37. | DOI | MR
[3] Aron, R. M., Schottenloher, M.: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal. 21 (1976), 7-30. | DOI | MR | Zbl
[4] Banach, S.: Théorie des Opérations Linéaires. Chelsea Publishing Co. New York French (1955). | MR | Zbl
[5] Coeuré, G.: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications a l'étude des fonctions analytiques. Ann. Inst. Fourier 20 French (1970), 361-432. | DOI | MR | Zbl
[6] Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). | MR | Zbl
[7] Díaz, J. C., Dineen, S.: Polynomials on stable spaces. Ark. Mat. 36 (1998), 87-96. | DOI | MR | Zbl
[8] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). | MR | Zbl
[9] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15 American Mathematical Society, Providence (1977). | MR | Zbl
[10] Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics Springer, London (1999). | DOI | MR | Zbl
[11] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces. {III}. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106 (2012), 457-469. | DOI | MR | Zbl
[12] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces. {II}. J. Funct. Anal. 259 (2010), 545-560. | DOI | MR | Zbl
[13] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite-dimensional spaces. I. J. Approx. Theory 126 (2004), 141-156. | DOI | MR | Zbl
[14] Enflo, P.: A counterexample to the approximation problem in Banach spaces. Acta Math. 130 (1973), 309-317. | DOI | MR | Zbl
[15] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Proceedings of the Second International Workshop on Functional Analysis, Trier, 1997. Note Mat. 17 (1997), 153-188. | MR
[16] Gelbaum, B. R., Lamadrid, J. G. de: Bases of tensor products of Banach spaces. Pac. J. Math. 11 (1961), 1281-1286. | DOI | MR | Zbl
[17] Godefroy, G., Saphar, P. D.: Three-space problems for the approximation properties. Proc. Am. Math. Soc. 105 (1989), 70-75. | DOI | MR | Zbl
[18] Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Am. Math. Soc. 16 French (1955), 140 pages. | MR | Zbl
[19] Mujica, J.: Complex Analysis in Banach Spaces. Holomorphic Functions and Domains of Holomorphy in Finite and Infinite Dimensions. North-Holland Math. Stud. 120. Notas de Matemática 107 North-Holland, Amsterdam (1986). | MR | Zbl
[20] Mujica, J.: Spaces of holomorphic functions and the approximation property. Lecture Notes, Universidad Complutense de Madrid, 2009.
[21] Nachbin, L.: Sur les espaces vectoriels topologiques d'applications continues. C. R. Acad. Sci., Paris, Sér. A 271 French (1970), 596-598. | MR | Zbl
[22] Nachbin, L.: On the topology of the space of all holomorphic functions on a given open subset. Nederl. Akad. Wet., Proc., Ser. A 70 Indag. Math. 29 (1967), 366-368. | MR | Zbl
[23] Pełczyński, A.: Projections in certain Banach spaces. Stud. Math. 19 (1960), 209-228. | DOI | MR | Zbl
[24] Pełczyński, A.: A property of multilinear operations. Stud. Math. 16 (1957), 173-182. | DOI | MR | Zbl
[25] Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser Basel (2007). | MR | Zbl
[26] Pisier, G.: De nouveaux espaces de Banach sans la propriété d'approximation (d'après A. Szankowski). Séminaire Bourbaki 1978/79 Lecture Notes in Math. 770 Springer, Berlin French (1980), 312-327. | MR | Zbl
[27] Szankowski, A.: $B({\cal H})$ does not have the approximation property. Acta Math. 147 (1981), 89-108. | DOI | MR
Cité par Sources :