Banach spaces of homogeneous polynomials without the approximation property
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 367-374
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present simple proofs that spaces of homogeneous polynomials on $L_{p}[0,1]$ and $\ell _{p}$ provide plenty of natural examples of Banach spaces without the approximation property. By giving necessary and sufficient conditions, our results bring to completion, at least for an important collection of Banach spaces, a circle of results begun in 1976 by R. Aron and M. Schottenloher (1976).
We present simple proofs that spaces of homogeneous polynomials on $L_{p}[0,1]$ and $\ell _{p}$ provide plenty of natural examples of Banach spaces without the approximation property. By giving necessary and sufficient conditions, our results bring to completion, at least for an important collection of Banach spaces, a circle of results begun in 1976 by R. Aron and M. Schottenloher (1976).
DOI : 10.1007/s10587-015-0181-6
Classification : 46B28, 46G20, 46G25
Keywords: Banach space; approximation property; linear operator; homogeneous polynomial; holomorphic function
@article{10_1007_s10587_015_0181_6,
     author = {Dineen, Se\'an and Mujica, Jorge},
     title = {Banach spaces of homogeneous polynomials without the approximation property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {367--374},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0181-6},
     mrnumber = {3360432},
     zbl = {06486952},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0181-6/}
}
TY  - JOUR
AU  - Dineen, Seán
AU  - Mujica, Jorge
TI  - Banach spaces of homogeneous polynomials without the approximation property
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 367
EP  - 374
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0181-6/
DO  - 10.1007/s10587-015-0181-6
LA  - en
ID  - 10_1007_s10587_015_0181_6
ER  - 
%0 Journal Article
%A Dineen, Seán
%A Mujica, Jorge
%T Banach spaces of homogeneous polynomials without the approximation property
%J Czechoslovak Mathematical Journal
%D 2015
%P 367-374
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0181-6/
%R 10.1007/s10587-015-0181-6
%G en
%F 10_1007_s10587_015_0181_6
Dineen, Seán; Mujica, Jorge. Banach spaces of homogeneous polynomials without the approximation property. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 367-374. doi: 10.1007/s10587-015-0181-6

[1] Alencar, R.: On reflexivity and basis for {$P(^mE)$}. Proc. R. Ir. Acad., Sect. A 85 (1985), 131-138. | MR

[2] Arias, A., Farmer, J. D.: On the structure of tensor products of {$l_p$}-spaces. Pac. J. Math. 175 (1996), 13-37. | DOI | MR

[3] Aron, R. M., Schottenloher, M.: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal. 21 (1976), 7-30. | DOI | MR | Zbl

[4] Banach, S.: Théorie des Opérations Linéaires. Chelsea Publishing Co. New York French (1955). | MR | Zbl

[5] Coeuré, G.: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications a l'étude des fonctions analytiques. Ann. Inst. Fourier 20 French (1970), 361-432. | DOI | MR | Zbl

[6] Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). | MR | Zbl

[7] Díaz, J. C., Dineen, S.: Polynomials on stable spaces. Ark. Mat. 36 (1998), 87-96. | DOI | MR | Zbl

[8] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). | MR | Zbl

[9] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15 American Mathematical Society, Providence (1977). | MR | Zbl

[10] Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics Springer, London (1999). | DOI | MR | Zbl

[11] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces. {III}. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106 (2012), 457-469. | DOI | MR | Zbl

[12] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces. {II}. J. Funct. Anal. 259 (2010), 545-560. | DOI | MR | Zbl

[13] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite-dimensional spaces. I. J. Approx. Theory 126 (2004), 141-156. | DOI | MR | Zbl

[14] Enflo, P.: A counterexample to the approximation problem in Banach spaces. Acta Math. 130 (1973), 309-317. | DOI | MR | Zbl

[15] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Proceedings of the Second International Workshop on Functional Analysis, Trier, 1997. Note Mat. 17 (1997), 153-188. | MR

[16] Gelbaum, B. R., Lamadrid, J. G. de: Bases of tensor products of Banach spaces. Pac. J. Math. 11 (1961), 1281-1286. | DOI | MR | Zbl

[17] Godefroy, G., Saphar, P. D.: Three-space problems for the approximation properties. Proc. Am. Math. Soc. 105 (1989), 70-75. | DOI | MR | Zbl

[18] Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Am. Math. Soc. 16 French (1955), 140 pages. | MR | Zbl

[19] Mujica, J.: Complex Analysis in Banach Spaces. Holomorphic Functions and Domains of Holomorphy in Finite and Infinite Dimensions. North-Holland Math. Stud. 120. Notas de Matemática 107 North-Holland, Amsterdam (1986). | MR | Zbl

[20] Mujica, J.: Spaces of holomorphic functions and the approximation property. Lecture Notes, Universidad Complutense de Madrid, 2009.

[21] Nachbin, L.: Sur les espaces vectoriels topologiques d'applications continues. C. R. Acad. Sci., Paris, Sér. A 271 French (1970), 596-598. | MR | Zbl

[22] Nachbin, L.: On the topology of the space of all holomorphic functions on a given open subset. Nederl. Akad. Wet., Proc., Ser. A 70 Indag. Math. 29 (1967), 366-368. | MR | Zbl

[23] Pełczyński, A.: Projections in certain Banach spaces. Stud. Math. 19 (1960), 209-228. | DOI | MR | Zbl

[24] Pełczyński, A.: A property of multilinear operations. Stud. Math. 16 (1957), 173-182. | DOI | MR | Zbl

[25] Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser Basel (2007). | MR | Zbl

[26] Pisier, G.: De nouveaux espaces de Banach sans la propriété d'approximation (d'après A. Szankowski). Séminaire Bourbaki 1978/79 Lecture Notes in Math. 770 Springer, Berlin French (1980), 312-327. | MR | Zbl

[27] Szankowski, A.: $B({\cal H})$ does not have the approximation property. Acta Math. 147 (1981), 89-108. | DOI | MR

Cité par Sources :