New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 331-346
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb {D}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_{\varphi }$ from Zygmund type spaces to Bloch type spaces in $\mathbb {D}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_{\varphi }$, from which sufficient and necessary conditions of compactness of $uC_{\varphi }$ follows immediately.
Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb {D}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_{\varphi }$ from Zygmund type spaces to Bloch type spaces in $\mathbb {D}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_{\varphi }$, from which sufficient and necessary conditions of compactness of $uC_{\varphi }$ follows immediately.
DOI : 10.1007/s10587-015-0178-1
Classification : 26A24, 30H30, 47B33, 47B38
Keywords: weighted composition operator; Zygmund type space; Bloch type space; essential norm
@article{10_1007_s10587_015_0178_1,
     author = {Guo, Xin-Cui and Zhou, Ze-Hua},
     title = {New characterizations for weighted composition operator from {Zygmund} type spaces to {Bloch} type spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {331--346},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0178-1},
     mrnumber = {3360429},
     zbl = {06486949},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0178-1/}
}
TY  - JOUR
AU  - Guo, Xin-Cui
AU  - Zhou, Ze-Hua
TI  - New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 331
EP  - 346
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0178-1/
DO  - 10.1007/s10587-015-0178-1
LA  - en
ID  - 10_1007_s10587_015_0178_1
ER  - 
%0 Journal Article
%A Guo, Xin-Cui
%A Zhou, Ze-Hua
%T New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces
%J Czechoslovak Mathematical Journal
%D 2015
%P 331-346
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0178-1/
%R 10.1007/s10587-015-0178-1
%G en
%F 10_1007_s10587_015_0178_1
Guo, Xin-Cui; Zhou, Ze-Hua. New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 331-346. doi: 10.1007/s10587-015-0178-1

[1] Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Isr. J. Math. 141 (2004), 263-276. | DOI | MR

[2] Bayart, F.: Parabolic composition operators on the ball. Adv. Math. 223 (2010), 1666-1705. | DOI | MR | Zbl

[3] Bayart, F.: A class of linear fractional maps of the ball and their composition operators. Adv. Math. 209 (2007), 649-665. | DOI | MR | Zbl

[4] Bayart, F., Charpentier, S.: Hyperbolic composition operators on the ball. Trans. Am. Math. Soc. 365 (2013), 911-938. | DOI | MR | Zbl

[5] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Aust. Math. Soc. 84 (2008), 9-20. | DOI | MR

[6] Chen, C., Zhou, Z.-H.: Essential norms of the integral-type composition operators between Bloch-type spaces. Integral Transforms Spec. Funct. 25 (2014), 552-561. | DOI | MR | Zbl

[7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1995). | MR | Zbl

[8] Esmaeili, K., Lindström, M.: Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equations Oper. Theory 75 (2013), 473-490. | DOI | MR | Zbl

[9] Fang, Z.-S., Zhou, Z.-H.: New characterizations of the weighted composition operators between Bloch type spaces in the polydisk. Can. Math. Bull. 57 (2014), 794-802. | DOI | MR

[10] Fang, Z.-S., Zhou, Z.-H.: Essential norms of composition operators between Bloch type spaces in the polydisk. Arch. Math. 99 (2012), 547-556. | DOI | MR | Zbl

[11] Gorkin, P., MacCluer, B. D.: Essential norms of composition operators. Integral Equations Oper. Theory 48 (2004), 27-40. | DOI | MR | Zbl

[12] Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equations Oper. Theory 72 (2012), 151-157. | DOI | MR | Zbl

[13] Hyvärinen, O., Lindström, M.: Estimates of essential norms of weighted composition operators between Bloch-type spaces. J. Math. Anal. Appl. 393 (2012), 38-44. | DOI | MR | Zbl

[14] Li, S., Stević, S.: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206 (2008), 825-831. | DOI | MR | Zbl

[15] Liang, Y.-X., Zhou, Z.-H.: New estimate of essential norm of composition followed by differentiation between Bloch-type spaces. Banach J. Math. Anal. 8 (2014), 118-137. | DOI | MR

[16] Liang, Y.-X., Zhou, Z.-H.: Essential norm of product of differentiation and composition operators between Bloch-type spaces. Arch. Math. 100 (2013), 347-360. | DOI | MR

[17] Liang, Y.-X., Zhou, Z.-H.: Estimates of essential norms of weighted composition operator from Bloch type spaces to Zygmund type spaces, arXiv:1401.0031v1 [math.FA], 2013. | MR

[18] MacCluer, B. D., Zhao, R.: Essential norms of weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 1437-1458. | DOI | MR | Zbl

[19] Manhas, J. S., Zhao, R.: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389 (2012), 32-47. | DOI | MR | Zbl

[20] Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. | DOI | MR | Zbl

[21] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics Springer, New York (1993). | MR | Zbl

[22] Song, X.-J., Zhou, Z.-H.: Differences of weighted composition operators from Bloch space to $H^\infty$ on the unit ball. J. Math. Anal. Appl. 401 (2013), 447-457. | DOI | MR | Zbl

[23] Stević, S.: Essential norms of weighted composition operators from the $\alpha$-Bloch space to a weighted-type space on the unit ball. Abstr. Appl. Anal. 2008 (2008), Article ID 279691, 11 pages. | MR | Zbl

[24] Stević, S., Chen, R., Zhou, Z.: Weighted composition operators between Bloch-type spaces in the polydisc. Sb. Math. 201 (2010), 289-319 translation from Mat. Sb. 201 (2010), 131-160 Russian. | DOI | MR | Zbl

[25] Wulan, H., Zheng, D., Zhu, K.: Composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137 (2009), 3861-3868. | DOI | MR | Zbl

[26] Ye, S., Hu, Q.: Weighted composition operators on the Zygmund space. Abstr. Appl. Anal. 2012 (2012), Article ID 462482, 18 pages. | MR | Zbl

[27] Zeng, H.-G., Zhou, Z. H.: Essential norm estimate of a composition operator between Bloch-type spaces in the unit ball. Rocky Mt. J. Math. 42 (2012), 1049-1071. | DOI | MR | Zbl

[28] Zhao, R.: Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 138 (2010), 2537-2546. | DOI | MR | Zbl

[29] Zhou, Z.-H., Chen, R.-Y.: Weighted composition operators from $F(p, q, s) $ to Bloch type spaces on the unit ball. Int. J. Math. 19 (2008), 899-926. | DOI | MR | Zbl

[30] Zhou, Z.-H., Liang, Y.-X.: Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball. Czech. Math. J. 62 (2012), 695-708. | DOI | MR | Zbl

[31] Zhou, Z.-H., Liang, Y.-X., Dong, X.-T.: Weighted composition operators between weighted-type space and Hardy space on the unit ball. Ann. Pol. Math. 104 (2012), 309-319. | DOI | MR

[32] Zhou, Z., Shi, J.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich. Math. J. 50 (2002), 381-405. | DOI | MR | Zbl

[33] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl

[34] Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23 (1993), 1143-1177. | DOI | MR | Zbl

[35] Zhu, K.: Operator Theory in Function Spaces. Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). | MR | Zbl

Cité par Sources :