On some free semigroups, generated by matrices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 289-299 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $$ A=\left [ \begin {matrix} 1 2 \\ 0 1 \end {matrix} \right ],\quad B_{\lambda }=\left [ \begin {matrix} 1 0 \\ \lambda 1 \end {matrix} \right ]. $$ We call a complex number $\lambda $ “semigroup free“ if the semigroup generated by $A$ and $B_{\lambda }$ is free and “free” if the group generated by $A$ and $B_{\lambda }$ is free. First families of semigroup free $\lambda $'s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free $\lambda $'s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common picture.
Let $$ A=\left [ \begin {matrix} 1 2 \\ 0 1 \end {matrix} \right ],\quad B_{\lambda }=\left [ \begin {matrix} 1 0 \\ \lambda 1 \end {matrix} \right ]. $$ We call a complex number $\lambda $ “semigroup free“ if the semigroup generated by $A$ and $B_{\lambda }$ is free and “free” if the group generated by $A$ and $B_{\lambda }$ is free. First families of semigroup free $\lambda $'s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free $\lambda $'s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common picture.
DOI : 10.1007/s10587-015-0175-4
Classification : 15A30, 20E05, 20M05
Keywords: free semigroup; semigroup of matrices
@article{10_1007_s10587_015_0175_4,
     author = {S{\l}anina, Piotr},
     title = {On some free semigroups, generated by matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {289--299},
     year = {2015},
     volume = {65},
     number = {2},
     doi = {10.1007/s10587-015-0175-4},
     mrnumber = {3360426},
     zbl = {06486946},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0175-4/}
}
TY  - JOUR
AU  - Słanina, Piotr
TI  - On some free semigroups, generated by matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 289
EP  - 299
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0175-4/
DO  - 10.1007/s10587-015-0175-4
LA  - en
ID  - 10_1007_s10587_015_0175_4
ER  - 
%0 Journal Article
%A Słanina, Piotr
%T On some free semigroups, generated by matrices
%J Czechoslovak Mathematical Journal
%D 2015
%P 289-299
%V 65
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0175-4/
%R 10.1007/s10587-015-0175-4
%G en
%F 10_1007_s10587_015_0175_4
Słanina, Piotr. On some free semigroups, generated by matrices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 289-299. doi: 10.1007/s10587-015-0175-4

[1] Bamberg, J.: Non-free points for groups generated by a pair of {$2\times 2$} matrices. J. Lond. Math. Soc., II. Ser. 62 (2000), 795-801. | DOI | MR | Zbl

[2] Brenner, J. L.: Quelques groupes libres de matrices. C. R. Acad. Sci., Paris 241 French (1955), 1689-1691. | MR | Zbl

[3] Brenner, J. L., Charnow, A.: Free semigroups of {$2\times 2$} matrices. Pac. J. Math. 77 (1978), 57-69. | DOI | MR | Zbl

[4] Chang, B., Jennings, S. A., Ree, R.: On certain pairs of matrices which generate free groups. Can. J. Math. 10 (1958), 279-284. | DOI | MR | Zbl

[5] Harpe, P. de la: Topics in Geometric Group Theory. Chicago Lectures in Mathematics The University of Chicago Press, Chicago (2000). | MR | Zbl

[6] Fuchs-Rabinowitsch, D. J.: On a certain representation of a free group. Leningrad State Univ. Annals Math. Ser. 10 Russian (1940), 154-157. | MR

[7] Ignatov, J. A.: Free and nonfree subgroups of $ PSL_{2}(\mathbb{C})$ that are generated by two parabolic elements. Mat. Sb., Nov. Ser. 106 Russian (1978), 372-379. | MR

[8] Ignatov, Y. A., Evtikhova, A. V.: Free groups of linear-fractional transformations. Chebyshevskiĭ Sb. 3 Russian (2002), 78-81. | MR | Zbl

[9] Ignatov, Y. A., Gruzdeva, T. N., Sviridova, I. A.: Free groups of linear-fractional transformations. Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 5 (1999), 116-120. | MR

[10] Keen, L., Series, C.: The Riley slice of Schottky space. Proc. Lond. Math. Soc. (3) 69 (1994), 72-90. | MR | Zbl

[11] Lyndon, R. C., Ullman, J. L.: Groups generated by two parabolic linear fractional transformations. Can. J. Math. 21 (1969), 1388-1403. | DOI | MR | Zbl

[12] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80 Springer, New York (1996). | MR

[13] Saks, S., Zygmund, A.: Analytic Functions. PWN-Polish Scientific Publishers Warsaw (1965). | MR | Zbl

[14] Sanov, I. N.: A property of a representation of a free group. Dokl. Akad. Nauk SSSR, N. Ser. 57 Russian (1947), 657-659. | MR

[15] Słanina, P.: On some free groups, generated by matrices. Demonstr. Math. (electronic only) 37 (2004), 55-61. | MR | Zbl

Cité par Sources :