On some free semigroups, generated by matrices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 289-299
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $$ A=\left [ \begin {matrix} 1 2 \\ 0 1 \end {matrix} \right ],\quad B_{\lambda }=\left [ \begin {matrix} 1 0 \\ \lambda 1 \end {matrix} \right ]. $$ We call a complex number $\lambda $ “semigroup free“ if the semigroup generated by $A$ and $B_{\lambda }$ is free and “free” if the group generated by $A$ and $B_{\lambda }$ is free. First families of semigroup free $\lambda $'s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free $\lambda $'s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common picture.
DOI :
10.1007/s10587-015-0175-4
Classification :
15A30, 20E05, 20M05
Keywords: free semigroup; semigroup of matrices
Keywords: free semigroup; semigroup of matrices
@article{10_1007_s10587_015_0175_4,
author = {S{\l}anina, Piotr},
title = {On some free semigroups, generated by matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {289--299},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2015},
doi = {10.1007/s10587-015-0175-4},
mrnumber = {3360426},
zbl = {06486946},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0175-4/}
}
TY - JOUR AU - Słanina, Piotr TI - On some free semigroups, generated by matrices JO - Czechoslovak Mathematical Journal PY - 2015 SP - 289 EP - 299 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0175-4/ DO - 10.1007/s10587-015-0175-4 LA - en ID - 10_1007_s10587_015_0175_4 ER -
Słanina, Piotr. On some free semigroups, generated by matrices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 2, pp. 289-299. doi: 10.1007/s10587-015-0175-4
Cité par Sources :