Lagrange approximation in Banach spaces
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 281-288
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \to \mathbb C$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.
Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \to \mathbb C$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.
DOI : 10.1007/s10587-015-0174-5
Classification : 30E10, 30E20, 46G20
Keywords: Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space
@article{10_1007_s10587_015_0174_5,
     author = {Nilsson, Lisa and Pinasco, Dami\'an and Zalduendo, Ignacio},
     title = {Lagrange approximation in {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {281--288},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0174-5},
     mrnumber = {3336039},
     zbl = {06433735},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0174-5/}
}
TY  - JOUR
AU  - Nilsson, Lisa
AU  - Pinasco, Damián
AU  - Zalduendo, Ignacio
TI  - Lagrange approximation in Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 281
EP  - 288
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0174-5/
DO  - 10.1007/s10587-015-0174-5
LA  - en
ID  - 10_1007_s10587_015_0174_5
ER  - 
%0 Journal Article
%A Nilsson, Lisa
%A Pinasco, Damián
%A Zalduendo, Ignacio
%T Lagrange approximation in Banach spaces
%J Czechoslovak Mathematical Journal
%D 2015
%P 281-288
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0174-5/
%R 10.1007/s10587-015-0174-5
%G en
%F 10_1007_s10587_015_0174_5
Nilsson, Lisa; Pinasco, Damián; Zalduendo, Ignacio. Lagrange approximation in Banach spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 281-288. doi: 10.1007/s10587-015-0174-5

[1] Andersson, M., Passare, M.: Complex Kergin interpolation. J. Approx. Theory 64 (1991), 214-225. | DOI | MR | Zbl

[2] Bloom, T.: Kergin interpolation of entire functions on $\mathbb{C}^n$. Duke Math. J. 48 (1981), 69-83. | DOI | MR

[3] Boor, C. de: Divided differences. Surv. Approx. Theory 1 (2005), 46-69. | MR | Zbl

[4] Dineen, S., Nilsson, L.: Integral representation of holomorphic mappings on fully nuclear spaces. J. Math. Anal. Appl. 339 146-152 (2008). | DOI | MR | Zbl

[5] Fernique, X.: Intégrabilité des vecteurs Gaussiens. C. R. Acad. Sci., Paris, Sér. A 270 1698-1699 (1970), French. | MR | Zbl

[6] Filipsson, L.: Kergin interpolation in Banach spaces. J. Approx. Theory 127 108-123 (2004). | DOI | MR | Zbl

[7] Filipsson, L.: Complex mean-value interpolation and approximation of holomorphic functions. J. Approx. Theory 91 244-278 (1997). | DOI | MR | Zbl

[8] Gelfond, A. O.: Calcul des Différences Finies. Collection Universitaire de Mathématiques 12 Dunod, Paris French (1963). | MR

[9] Genocchi, A.: On the Maclaurin summation formula and interpolating functions. C. R. Acad. Sci., Paris, Sér. A 86 Italian 466-469 (1878).

[10] Kergin, P.: A natural interpolation of $C^K$ functions. J. Approx. Theory 29 278-293 (1980). | DOI | MR

[11] Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463 Springer, Berlin (1975). | DOI | MR | Zbl

[12] Petersson, H.: Kergin interpolation in Banach spaces. Stud. Math. 153 101-114 (2002). | DOI | MR | Zbl

[13] Pinasco, D., Zalduendo, I.: Integral representation of holomorphic functions on Banach spaces. J. Math. Anal. Appl. 308 159-174 (2005). | DOI | MR | Zbl

[14] Simon, S.: Kergin approximation in Banach spaces. J. Approx. Theory 154 181-186 (2008). | DOI | MR | Zbl

Cité par Sources :