Dunkl-Gabor transform and time-frequency concentration
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 255-270
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg's uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks' uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to a particular window function cannot be time-frequency concentrated in a subset of the form $S\times \mathcal B(0,b)$ in the time-frequency plane $\mathbb R^d\times \widehat {\mathbb R}^d$. As a side result we generalize a related result of Donoho and Stark on stable recovery of a signal which has been truncated and corrupted by noise.
DOI :
10.1007/s10587-015-0172-7
Classification :
42C20, 43A32, 46E22
Keywords: time-frequency concentration; Dunkl-Gabor transform; uncertainty principles
Keywords: time-frequency concentration; Dunkl-Gabor transform; uncertainty principles
@article{10_1007_s10587_015_0172_7,
author = {Ghobber, Saifallah},
title = {Dunkl-Gabor transform and time-frequency concentration},
journal = {Czechoslovak Mathematical Journal},
pages = {255--270},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2015},
doi = {10.1007/s10587-015-0172-7},
mrnumber = {3336037},
zbl = {06433733},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0172-7/}
}
TY - JOUR AU - Ghobber, Saifallah TI - Dunkl-Gabor transform and time-frequency concentration JO - Czechoslovak Mathematical Journal PY - 2015 SP - 255 EP - 270 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0172-7/ DO - 10.1007/s10587-015-0172-7 LA - en ID - 10_1007_s10587_015_0172_7 ER -
%0 Journal Article %A Ghobber, Saifallah %T Dunkl-Gabor transform and time-frequency concentration %J Czechoslovak Mathematical Journal %D 2015 %P 255-270 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0172-7/ %R 10.1007/s10587-015-0172-7 %G en %F 10_1007_s10587_015_0172_7
Ghobber, Saifallah. Dunkl-Gabor transform and time-frequency concentration. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 255-270. doi: 10.1007/s10587-015-0172-7
Cité par Sources :