Keywords: algebraic connectivity; Fiedler vector
@article{10_1007_s10587_015_0170_9,
author = {Kirkland, Steve and Rocha, Israel and Trevisan, Vilmar},
title = {Algebraic connectivity of $k$-connected graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {219--236},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0170-9},
mrnumber = {3336035},
zbl = {06433731},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0170-9/}
}
TY - JOUR AU - Kirkland, Steve AU - Rocha, Israel AU - Trevisan, Vilmar TI - Algebraic connectivity of $k$-connected graphs JO - Czechoslovak Mathematical Journal PY - 2015 SP - 219 EP - 236 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0170-9/ DO - 10.1007/s10587-015-0170-9 LA - en ID - 10_1007_s10587_015_0170_9 ER -
%0 Journal Article %A Kirkland, Steve %A Rocha, Israel %A Trevisan, Vilmar %T Algebraic connectivity of $k$-connected graphs %J Czechoslovak Mathematical Journal %D 2015 %P 219-236 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0170-9/ %R 10.1007/s10587-015-0170-9 %G en %F 10_1007_s10587_015_0170_9
Kirkland, Steve; Rocha, Israel; Trevisan, Vilmar. Algebraic connectivity of $k$-connected graphs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 219-236. doi: 10.1007/s10587-015-0170-9
[1] Bapat, R. B., Kirkland, S. J., Pati, S.: The perturbed Laplacian matrix of a graph. Linear Multilinear Algebra 49 (2001), 219-242. | DOI | MR | Zbl
[2] Bapat, R. B., Lal, A. K., Pati, S.: On algebraic connectivity of graphs with at most two points of articulation in each block. Linear Multilinear Algebra 60 (2012), 415-432. | DOI | MR | Zbl
[3] Bapat, R. B., Pati, S.: Algebraic connectivity and the characteristic set of a graph. Linear Multilinear Algebra 45 (1998), 247-273. | DOI | MR | Zbl
[4] Abreu, N. M. M. de: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423 (2007), 53-73. | DOI | MR | Zbl
[5] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. | MR | Zbl
[6] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | MR | Zbl
[7] Kirkland, S.: Algebraic connectivity. Handbook of Linear Algebra Discrete Mathematics and Its Applications Chapman & Hall/CRC, Boca Raton (2007), 36-1-36-12 L. Hogben et al. | MR
[8] Kirkland, S., Neumann, M., Shader, B. L.: Characteristic vertices of weighted trees via Perron values. Linear Multilinear Algebra 40 (1996), 311-325. | DOI | MR | Zbl
[9] Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs. Linear Multilinear Algebra 44 (1998), 131-148. | DOI | MR | Zbl
[10] Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[11] Nikiforov, V.: The influence of Miroslav Fiedler on spectral graph theory. Linear Algebra Appl. 439 (2013), 818-821. | MR | Zbl
[12] Pothen, A., Simon, H. D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11 (1990), 430-452. | DOI | MR | Zbl
Cité par Sources :