Gradual doubling property of Hutchinson orbits
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 191-205 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The classical self-similar fractals can be obtained as fixed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, both have the doubling property. We prove that the elements of Hutchinson orbits possess the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits.
The classical self-similar fractals can be obtained as fixed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, both have the doubling property. We prove that the elements of Hutchinson orbits possess the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits.
DOI : 10.1007/s10587-015-0168-3
Classification : 28A75, 28A78
Keywords: metric space; doubling measure; Hausdorff-Kantorovich metric; iterated function system
@article{10_1007_s10587_015_0168_3,
     author = {Aimar, Hugo and Carena, Marilina and Iaffei, Bibiana},
     title = {Gradual doubling property of {Hutchinson} orbits},
     journal = {Czechoslovak Mathematical Journal},
     pages = {191--205},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0168-3},
     mrnumber = {3336033},
     zbl = {06433729},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0168-3/}
}
TY  - JOUR
AU  - Aimar, Hugo
AU  - Carena, Marilina
AU  - Iaffei, Bibiana
TI  - Gradual doubling property of Hutchinson orbits
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 191
EP  - 205
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0168-3/
DO  - 10.1007/s10587-015-0168-3
LA  - en
ID  - 10_1007_s10587_015_0168_3
ER  - 
%0 Journal Article
%A Aimar, Hugo
%A Carena, Marilina
%A Iaffei, Bibiana
%T Gradual doubling property of Hutchinson orbits
%J Czechoslovak Mathematical Journal
%D 2015
%P 191-205
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0168-3/
%R 10.1007/s10587-015-0168-3
%G en
%F 10_1007_s10587_015_0168_3
Aimar, Hugo; Carena, Marilina; Iaffei, Bibiana. Gradual doubling property of Hutchinson orbits. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 191-205. doi: 10.1007/s10587-015-0168-3

[1] Aimar, H., Carena, M., Iaffei, B.: Boundedness of the Hardy-Littlewood maximal operator along the orbits of contractive similitudes. J. Geom. Anal. 23 1832-1850 (2013). | DOI | MR | Zbl

[2] Aimar, H., Carena, M., Iaffei, B.: On approximation of maximal operators. Publ. Math. 77 87-99 (2010). | MR | Zbl

[3] Aimar, H., Carena, M., Iaffei, B.: Discrete approximation of spaces of homogeneous type. J. Geom. Anal. 19 1-18 (2009). | DOI | MR | Zbl

[4] Assouad, P.: Étude d'une dimension métrique liée à la possibilité de plongements dans {${\mathbb R}\sp{n}$}. C. R. Acad. Sci., Paris, Sér. A 288 731-734 (1979), French. | MR

[5] Coifman, R. R., Guzman, M. de: Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 25 137-143 (1970). | MR | Zbl

[6] Coifman, R. R., Weiss, G.: Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals. Lecture Notes in Mathematics 242 Springer, Berlin (1971). | DOI | MR | Zbl

[7] Falconer, K.: Techniques in Fractal Geometry. John Wiley Chichester (1997). | MR | Zbl

[8] Hutchinson, J. E.: Fractals and self similarity. Indiana Univ. Math. J. 30 713-747 (1981). | DOI | MR | Zbl

[9] Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and the {RBMO} space of Tolsa. Publ. Mat., Barc. 54 485-504 (2010). | DOI | MR | Zbl

[10] Hytönen, T., Liu, S., Yang, D., Yang, D.: Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Can. J. Math. 64 892-923 (2012). | DOI | MR | Zbl

[11] Hytönen, T., Martikainen, H.: Non-homogeneous $Tb$ theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22 1071-1107 (2012). | DOI | MR | Zbl

[12] Hytönen, T., Yang, D., Yang, D.: The Hardy space {$H\sp 1$} on non-homogeneous metric spaces. Math. Proc. Camb. Philos. Soc. 153 9-31 (2012). | DOI | MR

[13] Iaffei, B., Nitti, L.: Riesz type potentials in the framework of quasi-metric spaces equipped with upper doubling measures. ArXiv:1309.3755 (2013).

[14] Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics 143 Cambridge University Press, Cambridge (2001). | MR | Zbl

[15] Kigami, J.: A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math. 6 259-290 (1989). | DOI | MR | Zbl

[16] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 42 15-23 (1946). | DOI | MR | Zbl

[17] Mosco, U.: Variational fractals. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 683-712 (1997). | MR | Zbl

[18] Strichartz, R. S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006). | MR | Zbl

Cité par Sources :