Keywords: metric space; doubling measure; Hausdorff-Kantorovich metric; iterated function system
@article{10_1007_s10587_015_0168_3,
author = {Aimar, Hugo and Carena, Marilina and Iaffei, Bibiana},
title = {Gradual doubling property of {Hutchinson} orbits},
journal = {Czechoslovak Mathematical Journal},
pages = {191--205},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0168-3},
mrnumber = {3336033},
zbl = {06433729},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0168-3/}
}
TY - JOUR AU - Aimar, Hugo AU - Carena, Marilina AU - Iaffei, Bibiana TI - Gradual doubling property of Hutchinson orbits JO - Czechoslovak Mathematical Journal PY - 2015 SP - 191 EP - 205 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0168-3/ DO - 10.1007/s10587-015-0168-3 LA - en ID - 10_1007_s10587_015_0168_3 ER -
%0 Journal Article %A Aimar, Hugo %A Carena, Marilina %A Iaffei, Bibiana %T Gradual doubling property of Hutchinson orbits %J Czechoslovak Mathematical Journal %D 2015 %P 191-205 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0168-3/ %R 10.1007/s10587-015-0168-3 %G en %F 10_1007_s10587_015_0168_3
Aimar, Hugo; Carena, Marilina; Iaffei, Bibiana. Gradual doubling property of Hutchinson orbits. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 191-205. doi: 10.1007/s10587-015-0168-3
[1] Aimar, H., Carena, M., Iaffei, B.: Boundedness of the Hardy-Littlewood maximal operator along the orbits of contractive similitudes. J. Geom. Anal. 23 1832-1850 (2013). | DOI | MR | Zbl
[2] Aimar, H., Carena, M., Iaffei, B.: On approximation of maximal operators. Publ. Math. 77 87-99 (2010). | MR | Zbl
[3] Aimar, H., Carena, M., Iaffei, B.: Discrete approximation of spaces of homogeneous type. J. Geom. Anal. 19 1-18 (2009). | DOI | MR | Zbl
[4] Assouad, P.: Étude d'une dimension métrique liée à la possibilité de plongements dans {${\mathbb R}\sp{n}$}. C. R. Acad. Sci., Paris, Sér. A 288 731-734 (1979), French. | MR
[5] Coifman, R. R., Guzman, M. de: Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 25 137-143 (1970). | MR | Zbl
[6] Coifman, R. R., Weiss, G.: Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals. Lecture Notes in Mathematics 242 Springer, Berlin (1971). | DOI | MR | Zbl
[7] Falconer, K.: Techniques in Fractal Geometry. John Wiley Chichester (1997). | MR | Zbl
[8] Hutchinson, J. E.: Fractals and self similarity. Indiana Univ. Math. J. 30 713-747 (1981). | DOI | MR | Zbl
[9] Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and the {RBMO} space of Tolsa. Publ. Mat., Barc. 54 485-504 (2010). | DOI | MR | Zbl
[10] Hytönen, T., Liu, S., Yang, D., Yang, D.: Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Can. J. Math. 64 892-923 (2012). | DOI | MR | Zbl
[11] Hytönen, T., Martikainen, H.: Non-homogeneous $Tb$ theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22 1071-1107 (2012). | DOI | MR | Zbl
[12] Hytönen, T., Yang, D., Yang, D.: The Hardy space {$H\sp 1$} on non-homogeneous metric spaces. Math. Proc. Camb. Philos. Soc. 153 9-31 (2012). | DOI | MR
[13] Iaffei, B., Nitti, L.: Riesz type potentials in the framework of quasi-metric spaces equipped with upper doubling measures. ArXiv:1309.3755 (2013).
[14] Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics 143 Cambridge University Press, Cambridge (2001). | MR | Zbl
[15] Kigami, J.: A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math. 6 259-290 (1989). | DOI | MR | Zbl
[16] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 42 15-23 (1946). | DOI | MR | Zbl
[17] Mosco, U.: Variational fractals. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 683-712 (1997). | MR | Zbl
[18] Strichartz, R. S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006). | MR | Zbl
Cité par Sources :