Generalized derivations on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 179-190
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\geq 1$ is a fixed integer. Then one of the following holds: \begin {itemize} \item [(1)] there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$; \item [(2)] $R$ satisfies $s_4$ and $F(x)=ax+xb$ for all $x\in R$, with $a, b\in U$ and $a-b\in C$; \item [(3)] $\mathop {\rm char}(R)=2$ and $R$ satisfies $s_4$. \end {itemize} As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
DOI :
10.1007/s10587-015-0167-4
Classification :
16N60, 16W25, 16W80
Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra
Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra
@article{10_1007_s10587_015_0167_4,
author = {Dhara, Basudeb and Kar, Sukhendu and Mondal, Sachhidananda},
title = {Generalized derivations on {Lie} ideals in prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {179--190},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2015},
doi = {10.1007/s10587-015-0167-4},
mrnumber = {3336032},
zbl = {06433728},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/}
}
TY - JOUR AU - Dhara, Basudeb AU - Kar, Sukhendu AU - Mondal, Sachhidananda TI - Generalized derivations on Lie ideals in prime rings JO - Czechoslovak Mathematical Journal PY - 2015 SP - 179 EP - 190 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/ DO - 10.1007/s10587-015-0167-4 LA - en ID - 10_1007_s10587_015_0167_4 ER -
%0 Journal Article %A Dhara, Basudeb %A Kar, Sukhendu %A Mondal, Sachhidananda %T Generalized derivations on Lie ideals in prime rings %J Czechoslovak Mathematical Journal %D 2015 %P 179-190 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/ %R 10.1007/s10587-015-0167-4 %G en %F 10_1007_s10587_015_0167_4
Dhara, Basudeb; Kar, Sukhendu; Mondal, Sachhidananda. Generalized derivations on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 179-190. doi: 10.1007/s10587-015-0167-4
Cité par Sources :