Generalized derivations on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 179-190 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\geq 1$ is a fixed integer. Then one of the following holds: \begin {itemize} \item [(1)] there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$; \item [(2)] $R$ satisfies $s_4$ and $F(x)=ax+xb$ for all $x\in R$, with $a, b\in U$ and $a-b\in C$; \item [(3)] $\mathop {\rm char}(R)=2$ and $R$ satisfies $s_4$. \end {itemize} As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\geq 1$ is a fixed integer. Then one of the following holds: \begin {itemize} \item [(1)] there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$; \item [(2)] $R$ satisfies $s_4$ and $F(x)=ax+xb$ for all $x\in R$, with $a, b\in U$ and $a-b\in C$; \item [(3)] $\mathop {\rm char}(R)=2$ and $R$ satisfies $s_4$. \end {itemize} As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
DOI : 10.1007/s10587-015-0167-4
Classification : 16N60, 16W25, 16W80
Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra
@article{10_1007_s10587_015_0167_4,
     author = {Dhara, Basudeb and Kar, Sukhendu and Mondal, Sachhidananda},
     title = {Generalized derivations on {Lie} ideals in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {179--190},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0167-4},
     mrnumber = {3336032},
     zbl = {06433728},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/}
}
TY  - JOUR
AU  - Dhara, Basudeb
AU  - Kar, Sukhendu
AU  - Mondal, Sachhidananda
TI  - Generalized derivations on Lie ideals in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 179
EP  - 190
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/
DO  - 10.1007/s10587-015-0167-4
LA  - en
ID  - 10_1007_s10587_015_0167_4
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%A Kar, Sukhendu
%A Mondal, Sachhidananda
%T Generalized derivations on Lie ideals in prime rings
%J Czechoslovak Mathematical Journal
%D 2015
%P 179-190
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/
%R 10.1007/s10587-015-0167-4
%G en
%F 10_1007_s10587_015_0167_4
Dhara, Basudeb; Kar, Sukhendu; Mondal, Sachhidananda. Generalized derivations on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 179-190. doi: 10.1007/s10587-015-0167-4

[1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Monographs and Textbooks in Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). | MR

[2] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267. | DOI | MR | Zbl

[3] Brešar, M., Vukman, J.: On left derivations and related mappings. Proc. Am. Math. Soc. 110 (1990), 7-16. | DOI | MR | Zbl

[4] Carini, L., Filippis, V. De: Commutators with power central values on a Lie ideal. Pac. J. Math. 193 (2000), 269-278. | DOI | MR | Zbl

[5] Chuang, C.-L.: G{PI}s having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | Zbl

[6] Filippis, V. De: Generalized derivations and commutators with nilpotent values on Lie ideals. Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. | MR | Zbl

[7] Filippis, V. de, Scudo, G., El-Sayiad, M. S. Tammam: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czech. Math. J. 62 (2012), 453-468. | DOI | MR

[8] Dhara, B.: Power values of derivations with annihilator conditions on Lie ideals in prime rings. Commun. Algebra 37 (2009), 2159-2167. | DOI | MR | Zbl

[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR

[10] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90 (1968), 1067-1073. | DOI | MR | Zbl

[11] Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications 37 American Mathematical Society, Providence (1964). | MR

[12] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168 translation from Algebra i Logika Russian 17 (1978), 220-238, 242-243. | MR

[13] Kim, B.-D.: Jordan derivations on prime rings and their applications in Banach algebras, I. Commun. Korean Math. Soc. 28 (2013), 535-558. | DOI | MR | Zbl

[14] Kim, B.-D.: Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), 607-618. | DOI | MR | Zbl

[15] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. | DOI | MR | Zbl

[16] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | Zbl

[17] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic $2$. Pac. J. Math. 42 (1972), 117-136. | DOI | MR | Zbl

[18] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations. Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. | MR | Zbl

[19] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. | DOI | MR | Zbl

[20] Lee, T. K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. | MR | Zbl

[21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR

[22] Mathieu, M.: Properties of the product of two derivations of a {$C^*$}-algebra. Can. Math. Bull. 32 (1989), 490-497. | DOI | MR

[23] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical. Arch. Math. 57 (1991), 469-474. | DOI | MR | Zbl

[24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42 (2005), 671-678. | DOI | MR | Zbl

[25] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR

[26] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 20 (1969), 166-170. | DOI | MR | Zbl

[27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260-264. | DOI | MR | Zbl

[28] Thomas, M. P.: The image of a derivation is contained in the radical. Ann. Math. (2) 128 (1988), 435-460. | MR | Zbl

[29] Vukman, J.: On derivations in prime rings and Banach algebras. Proc. Am. Math. Soc. 116 (1992), 877-884. | DOI | MR | Zbl

[30] Yood, B.: Continuous homomorphisms and derivations on Banach algebras. Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 Contemp. Math. 32 Amer. Math. Soc., Providence (1984), 279-284 F. Greenleaf et al. | MR | Zbl

Cité par Sources :