Generalized derivations on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 179-190.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\geq 1$ is a fixed integer. Then one of the following holds: \begin {itemize} \item [(1)] there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$; \item [(2)] $R$ satisfies $s_4$ and $F(x)=ax+xb$ for all $x\in R$, with $a, b\in U$ and $a-b\in C$; \item [(3)] $\mathop {\rm char}(R)=2$ and $R$ satisfies $s_4$. \end {itemize} As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
DOI : 10.1007/s10587-015-0167-4
Classification : 16N60, 16W25, 16W80
Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra
@article{10_1007_s10587_015_0167_4,
     author = {Dhara, Basudeb and Kar, Sukhendu and Mondal, Sachhidananda},
     title = {Generalized derivations on {Lie} ideals in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {179--190},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.1007/s10587-015-0167-4},
     mrnumber = {3336032},
     zbl = {06433728},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/}
}
TY  - JOUR
AU  - Dhara, Basudeb
AU  - Kar, Sukhendu
AU  - Mondal, Sachhidananda
TI  - Generalized derivations on Lie ideals in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 179
EP  - 190
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/
DO  - 10.1007/s10587-015-0167-4
LA  - en
ID  - 10_1007_s10587_015_0167_4
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%A Kar, Sukhendu
%A Mondal, Sachhidananda
%T Generalized derivations on Lie ideals in prime rings
%J Czechoslovak Mathematical Journal
%D 2015
%P 179-190
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/
%R 10.1007/s10587-015-0167-4
%G en
%F 10_1007_s10587_015_0167_4
Dhara, Basudeb; Kar, Sukhendu; Mondal, Sachhidananda. Generalized derivations on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 179-190. doi : 10.1007/s10587-015-0167-4. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0167-4/

Cité par Sources :