Ojective ideals in modular lattices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 161-178
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.
The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.
DOI : 10.1007/s10587-015-0166-5
Classification : 06B10, 06C05, 16D10
Keywords: modular lattice; essential ideal; max-semicomplement; extending ideal; direct summand; exchangeable decomposition; ojective ideal
@article{10_1007_s10587_015_0166_5,
     author = {Nimbhorkar, Shriram K. and Shroff, Rupal C.},
     title = {Ojective ideals in modular lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {161--178},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0166-5},
     mrnumber = {3336031},
     zbl = {06433727},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0166-5/}
}
TY  - JOUR
AU  - Nimbhorkar, Shriram K.
AU  - Shroff, Rupal C.
TI  - Ojective ideals in modular lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 161
EP  - 178
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0166-5/
DO  - 10.1007/s10587-015-0166-5
LA  - en
ID  - 10_1007_s10587_015_0166_5
ER  - 
%0 Journal Article
%A Nimbhorkar, Shriram K.
%A Shroff, Rupal C.
%T Ojective ideals in modular lattices
%J Czechoslovak Mathematical Journal
%D 2015
%P 161-178
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0166-5/
%R 10.1007/s10587-015-0166-5
%G en
%F 10_1007_s10587_015_0166_5
Nimbhorkar, Shriram K.; Shroff, Rupal C. Ojective ideals in modular lattices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 161-178. doi: 10.1007/s10587-015-0166-5

[1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Goldie extending modules. Commun. Algebra 37 (2009), 663-683; Corrigendum. 38 4747-4748 (2010); Corrigendum. 41 2005 (2013). | DOI | MR | Zbl

[2] Birkenmeier, G. F., Müller, B. J., Rizvi, S. T.: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebra 30 (2002), 1395-1415. | DOI | MR | Zbl

[3] Grätzer, G.: General Lattice Theory. Birkhäuser Basel (1998). | MR

[4] Grzeszczuk, P., Puczyłowski, E. R.: On finiteness conditions of modular lattices. Commun. Algebra 26 (1998), 2949-2957. | DOI | MR | Zbl

[5] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra 31 (1984), 47-54. | DOI | MR | Zbl

[6] Hanada, K., Kuratomi, Y., Oshiro, K.: On direct sums of extending modules and internal exchange property. J. Algebra 250 (2002), 115-133. | DOI | MR | Zbl

[7] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523-532. | MR | Zbl

[8] Kamal, M. A., Müller, B. J.: Extending modules over commutative domains. Osaka J. Math. 25 (1988), 531-538. | MR | Zbl

[9] Kamal, M. A., Müller, B. J.: The structure of extending modules over Noetherian rings. Osaka J. Math. 25 (1988), 539-551. | MR | Zbl

[10] Kamal, M. A., Müller, B. J.: Torsion free extending modules. Osaka J. Math. 25 (1988), 825-832. | MR | Zbl

[11] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189 Springer, New York (1999). | DOI | MR

[12] Mohamed, S. H., Müller, B. J.: Ojective modules. Commun. Algebra 30 (2002), 1817-1827. | DOI | MR | Zbl

Cité par Sources :