Keywords: modular lattice; essential ideal; max-semicomplement; extending ideal; direct summand; exchangeable decomposition; ojective ideal
@article{10_1007_s10587_015_0166_5,
author = {Nimbhorkar, Shriram K. and Shroff, Rupal C.},
title = {Ojective ideals in modular lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {161--178},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0166-5},
mrnumber = {3336031},
zbl = {06433727},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0166-5/}
}
TY - JOUR AU - Nimbhorkar, Shriram K. AU - Shroff, Rupal C. TI - Ojective ideals in modular lattices JO - Czechoslovak Mathematical Journal PY - 2015 SP - 161 EP - 178 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0166-5/ DO - 10.1007/s10587-015-0166-5 LA - en ID - 10_1007_s10587_015_0166_5 ER -
%0 Journal Article %A Nimbhorkar, Shriram K. %A Shroff, Rupal C. %T Ojective ideals in modular lattices %J Czechoslovak Mathematical Journal %D 2015 %P 161-178 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0166-5/ %R 10.1007/s10587-015-0166-5 %G en %F 10_1007_s10587_015_0166_5
Nimbhorkar, Shriram K.; Shroff, Rupal C. Ojective ideals in modular lattices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 161-178. doi: 10.1007/s10587-015-0166-5
[1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Goldie extending modules. Commun. Algebra 37 (2009), 663-683; Corrigendum. 38 4747-4748 (2010); Corrigendum. 41 2005 (2013). | DOI | MR | Zbl
[2] Birkenmeier, G. F., Müller, B. J., Rizvi, S. T.: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebra 30 (2002), 1395-1415. | DOI | MR | Zbl
[3] Grätzer, G.: General Lattice Theory. Birkhäuser Basel (1998). | MR
[4] Grzeszczuk, P., Puczyłowski, E. R.: On finiteness conditions of modular lattices. Commun. Algebra 26 (1998), 2949-2957. | DOI | MR | Zbl
[5] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra 31 (1984), 47-54. | DOI | MR | Zbl
[6] Hanada, K., Kuratomi, Y., Oshiro, K.: On direct sums of extending modules and internal exchange property. J. Algebra 250 (2002), 115-133. | DOI | MR | Zbl
[7] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523-532. | MR | Zbl
[8] Kamal, M. A., Müller, B. J.: Extending modules over commutative domains. Osaka J. Math. 25 (1988), 531-538. | MR | Zbl
[9] Kamal, M. A., Müller, B. J.: The structure of extending modules over Noetherian rings. Osaka J. Math. 25 (1988), 539-551. | MR | Zbl
[10] Kamal, M. A., Müller, B. J.: Torsion free extending modules. Osaka J. Math. 25 (1988), 825-832. | MR | Zbl
[11] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189 Springer, New York (1999). | DOI | MR
[12] Mohamed, S. H., Müller, B. J.: Ojective modules. Commun. Algebra 30 (2002), 1817-1827. | DOI | MR | Zbl
Cité par Sources :