Keywords: cubical dimension; embedding; Havel's conjecture; hypercube; tree
@article{10_1007_s10587_015_0165_6,
author = {Kabyl, Kamal and Berrachedi, Abdelhafid and Sopena, \'Eric},
title = {A note on the cubical dimension of new classes of binary trees},
journal = {Czechoslovak Mathematical Journal},
pages = {151--160},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0165-6},
mrnumber = {3336030},
zbl = {06433726},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0165-6/}
}
TY - JOUR AU - Kabyl, Kamal AU - Berrachedi, Abdelhafid AU - Sopena, Éric TI - A note on the cubical dimension of new classes of binary trees JO - Czechoslovak Mathematical Journal PY - 2015 SP - 151 EP - 160 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0165-6/ DO - 10.1007/s10587-015-0165-6 LA - en ID - 10_1007_s10587_015_0165_6 ER -
%0 Journal Article %A Kabyl, Kamal %A Berrachedi, Abdelhafid %A Sopena, Éric %T A note on the cubical dimension of new classes of binary trees %J Czechoslovak Mathematical Journal %D 2015 %P 151-160 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0165-6/ %R 10.1007/s10587-015-0165-6 %G en %F 10_1007_s10587_015_0165_6
Kabyl, Kamal; Berrachedi, Abdelhafid; Sopena, Éric. A note on the cubical dimension of new classes of binary trees. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 151-160. doi: 10.1007/s10587-015-0165-6
[1] Bezrukov, S., Monien, B., Unger, W., Wechsung, G.: Embedding ladders and caterpillars into the hypercube. Discrete Appl. Math. 83 (1998), 21-29. | DOI | MR | Zbl
[2] Chen, C.-C., Chen, R.-J.: Compact embedding of binary trees into hypercubes. Inf. Process. Lett. 54 (1995), 69-72. | DOI | MR | Zbl
[3] Choudum, S. A., Lavanya, S.: Embedding a subclass of trees into hypercubes. Discrete Math. 311 (2011), 866-871. | DOI | MR | Zbl
[4] Choudum, S. A., Raman, I.: Embedding height balanced trees and Fibonacci trees in hypercubes. J. Appl. Math. Comput. 30 (2009), 39-52. | DOI | MR | Zbl
[5] Dvořák, T.: Dense sets and embedding binary trees into hypercubes. Discrete Appl. Math. 155 (2007), 506-514. | DOI | MR | Zbl
[6] Firsov, V. V.: On isometric embedding of a graph into a Boolean cube. Kibernetika 1965 Russian (1965), 95-96 Cybernetics 1 (1965), 112-113. | DOI | MR
[7] Harary, F., Lewinter, M., Widulski, W.: On two-legged caterpillars which span hypercubes. Congr. Numer. 66 (1988), 103-108. | MR | Zbl
[8] Havel, I.: On Hamiltonian circuits and spanning trees of hypercubes. Čas. Pěst. Mat. 109 (1984), 135-152. | MR | Zbl
[9] Havel, I., Liebl, P.: Embedding the dichotomic tree into the $n$-cube. Čas. Pěst. Mat. 97 Czech (1972), 201-205. | MR | Zbl
[10] Havel, I., Morávek, J.: {$B$}-valuations of graphs. Czech. Math. J. 22 (1972), 338-351. | MR | Zbl
[11] Kobeissi, M., Mollard, M.: Spanning graphs of hypercubes: starlike and double starlike trees. Discrete Math. 244 (2002), 231-239. | DOI | MR | Zbl
[12] Nebeský, L.: On cubes and dichotomic trees. Čas. Pěst. Mat. 99 (1974), 164-167. | MR | Zbl
[13] Nekri, M., Berrachedi, A.: Two new classes of trees embeddable into hypercubes. RAIRO, Oper. Res. 38 (2004), 295-303. | DOI | MR | Zbl
[14] Wagner, A., Corneil, D. G.: Embedding trees in a hypercube is NP-complete. SIAM J. Comput. 19 (1990), 570-590. | DOI | MR | Zbl
Cité par Sources :