Some properties complementary to Brualdi-Li matrices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 135-149 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_{2n}$. We show that $B_{2n}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_{2n}$ is also determined. Related results obtained in previous articles are proven to be corollaries.
In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_{2n}$. We show that $B_{2n}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_{2n}$ is also determined. Related results obtained in previous articles are proven to be corollaries.
DOI : 10.1007/s10587-015-0164-7
Classification : 05C20, 05C50, 15A15
Keywords: tournament matrix; Brualdi-Li matrix; eigenvalue; Perron value
@article{10_1007_s10587_015_0164_7,
     author = {Wang, Chuanlong and Yong, Xuerong},
     title = {Some properties complementary to {Brualdi-Li} matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {135--149},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0164-7},
     mrnumber = {3336029},
     zbl = {06433725},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0164-7/}
}
TY  - JOUR
AU  - Wang, Chuanlong
AU  - Yong, Xuerong
TI  - Some properties complementary to Brualdi-Li matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 135
EP  - 149
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0164-7/
DO  - 10.1007/s10587-015-0164-7
LA  - en
ID  - 10_1007_s10587_015_0164_7
ER  - 
%0 Journal Article
%A Wang, Chuanlong
%A Yong, Xuerong
%T Some properties complementary to Brualdi-Li matrices
%J Czechoslovak Mathematical Journal
%D 2015
%P 135-149
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0164-7/
%R 10.1007/s10587-015-0164-7
%G en
%F 10_1007_s10587_015_0164_7
Wang, Chuanlong; Yong, Xuerong. Some properties complementary to Brualdi-Li matrices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 135-149. doi: 10.1007/s10587-015-0164-7

[1] Brauer, A., Gentry, I. C.: Some remarks on tournament matrices. Linear Algebra Appl. 5 (1972), 311-318. | MR | Zbl

[2] Brauer, A., Gentry, I. C.: On the characteristic roots of tournament matrices. Bull. Am. Math. Soc. 74 (1968), 1133-1135. | DOI | MR | Zbl

[3] Brualdi, R., Li, Q.: Problem 31. Discrete Mathematics 43 (1983), 329-330.

[4] Davis, P. J.: Circulant Matrices. Pure & Applied Mathematics. John Wiley & Sons New York (1979). | MR

[5] Friedland, S.: Eigenvalues of almost skew symmetric matrices and tournament matrices. Combinatorial and Graph-Theoretical Problems in Linear Algebra; Proceedings of a workshop held at the University of Minnesota, USA, 1991; IMA Vol. Math. Appl. 50 Springer, New York (1993), 189-206 R. A. Brualdi et al. | MR | Zbl

[6] Gregory, D. A., Kirkland, S. J.: Singular values of tournament matrices. Electron. J. Linear Algebra (electronic only) 5 (1999), 39-52. | MR | Zbl

[7] Gregory, D. A., Kirkland, S. J., Shader, B. L.: Pick's inequality and tournaments. Linear Algebra Appl. 186 (1993), 15-36. | MR | Zbl

[8] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge Mathematical Library Cambridge Univ. Press, Cambridge (1952). | MR | Zbl

[9] Hemasinha, R., Weaver, J. R., Kirkland, S. J., Stuart, J. L.: Properties of the Brualdi-{L}i tournament matrix. Linear Algebra Appl. 361 (2003), 63-73. | MR | Zbl

[10] Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76 (1954), 620-630. | DOI | MR | Zbl

[11] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press Cambridge (1991). | Zbl

[12] Kirkland, S.: An upper bound on the Perron value of an almost regular tournament matrix. Linear Algebra Appl. 361 (2003), 7-22. | MR | Zbl

[13] Kirkland, S.: A note on Perron vectors for almost regular tournament matrices. Linear Algebra Appl. 266 (1997), 43-47. | MR | Zbl

[14] Kirkland, S.: A note on the sequence of Brualdi-{L}i matrices. Linear Algebra Appl. 248 (1996), 233-240. | DOI | MR | Zbl

[15] Kirkland, S.: On the minimum Perron value for an irreducible tournament matrix. Linear Algebra Appl. 244 (1996), 277-304. | MR | Zbl

[16] Kirkland, S.: Hypertournament matrices, score vectors and eigenvalues. Linear Multilinear Algebra 30 (1991), 261-274. | DOI | MR | Zbl

[17] Kirkland, S. J., Shader, B. L.: Tournament matrices with extremal spectral properties. Linear Algebra Appl. 196 (1994), 1-17. | MR | Zbl

[18] Maybee, J. S., Pullman, N. J.: Tournament matrices and their generalizations. I. Linear Multilinear Algebra 28 (1990), 57-70. | DOI | MR | Zbl

[19] Mirsky, L.: Inequalities and existence theorems in the theory of matrices. J. Math. Anal. Appl. 9 (1964), 99-118. | DOI | MR | Zbl

[20] Moon, J. W.: Topics on Tournaments. Holt, Rinehart and Winston New York (1968). | MR | Zbl

[21] Moon, J. W., Pullman, N. J.: On generalized tournament matrices. SIAM Rev. 12 (1970), 384-399. | DOI | MR | Zbl

[22] Pólya, G., Szegő, G.: Problems and Theorems in Analysis. II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Classics in Mathematics Springer, Berlin (1998). | MR | Zbl

[23] Shader, B. L.: On tournament matrices. Linear Algebra Appl. 162-164 (1992), 335-368. | MR | Zbl

Cité par Sources :