The $L^p$-Helmholtz projection in finite cylinders
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article we prove for $1
In this article we prove for $1$ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.
DOI : 10.1007/s10587-015-0163-8
Classification : 35J20, 35J25, 35Q30, 42B15, 46E40
Keywords: Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal R$-boundedness; reflection technique; fluid dynamics
@article{10_1007_s10587_015_0163_8,
     author = {Nau, Tobias},
     title = {The $L^p${-Helmholtz} projection in finite cylinders},
     journal = {Czechoslovak Mathematical Journal},
     pages = {119--134},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0163-8},
     mrnumber = {3336028},
     zbl = {06433724},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/}
}
TY  - JOUR
AU  - Nau, Tobias
TI  - The $L^p$-Helmholtz projection in finite cylinders
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 119
EP  - 134
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/
DO  - 10.1007/s10587-015-0163-8
LA  - en
ID  - 10_1007_s10587_015_0163_8
ER  - 
%0 Journal Article
%A Nau, Tobias
%T The $L^p$-Helmholtz projection in finite cylinders
%J Czechoslovak Mathematical Journal
%D 2015
%P 119-134
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/
%R 10.1007/s10587-015-0163-8
%G en
%F 10_1007_s10587_015_0163_8
Nau, Tobias. The $L^p$-Helmholtz projection in finite cylinders. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134. doi: 10.1007/s10587-015-0163-8

[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. I. Unique solvability. J. Math. Fluid Mech. 7 (2005), 201-222. | DOI | MR | Zbl

[2] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}. {$H_\infty$}-calculus. J. Math. Fluid Mech. 7 (2005), 223-260. | DOI | MR | Zbl

[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311-343. | DOI | MR | Zbl

[4] Bernstein, S.: Sur la convergence absolue des séries trigonométriques. C. R. Acad. Sci., Paris 158 French (1914), 1661-1663.

[5] Bogovskiĭ, M. E.: Decomposition of {$L_p(\Omega;{\mathbb R}^n)$} into a direct sum of subspaces of solenoidal and potential vector fields. Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786. | MR

[6] Bu, S.: On operator-valued Fourier multipliers. Sci. China, Ser. A 49 (2006), 574-576. | DOI | MR | Zbl

[7] Bu, S., Kim, J.-M.: Operator-valued Fourier multiplier theorems on {$L_p$}-spaces on {$\mathbb T^d$}. Arch. Math. 82 (2004), 404-414. | MR

[8] Denk, R., Hieber, M., Prüss, J.: {$\mathcal R$}-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788 (2003), 114. | MR

[9] Farwig, R.: Weighted {$L^q$}-{H}elmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8 (2003), 357-384. | MR | Zbl

[10] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248. | DOI | MR | Zbl

[11] Farwig, R., Myong-Hwan, R.: Resolvent estimates and maximal regularity in weighted {$L^q$}-spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid Mech. 10 (2008), 352-387. | DOI | MR | Zbl

[12] Farwig, R., Ri, M.-H.: An {$L^q(L^2)$}-theory of the generalized Stokes resolvent system in infinite cylinders. Stud. Math. 178 (2007), 197-216. | DOI | MR | Zbl

[13] Farwig, R., Ri, M.-H.: Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280 (2007), 1061-1082. | DOI | MR | Zbl

[14] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994). | MR | Zbl

[15] Kunstmann, P. C., Weis, L.: Maximal {$L_p$}-regularity for parabolic equations, Fourier multiplier theorems and {$H^\infty$}-functional calculus. Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311. | MR | Zbl

[16] Nau, T.: $ L^ P$-Theory of Cylindrical Boundary Value Problems. Springer Spektrum Wiesbaden (2012). | MR | Zbl

[17] Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010). | MR | Zbl

[18] Štrkalj, Ž., Weis, L.: On operator-valued Fourier multiplier theorems. Trans. Am. Math. Soc. 359 (2007), 3529-3547. | DOI | MR | Zbl

Cité par Sources :