The $L^p$-Helmholtz projection in finite cylinders
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article we prove for $1$ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.
DOI : 10.1007/s10587-015-0163-8
Classification : 35J20, 35J25, 35Q30, 42B15, 46E40
Keywords: Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal R$-boundedness; reflection technique; fluid dynamics
@article{10_1007_s10587_015_0163_8,
     author = {Nau, Tobias},
     title = {The $L^p${-Helmholtz} projection in finite cylinders},
     journal = {Czechoslovak Mathematical Journal},
     pages = {119--134},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.1007/s10587-015-0163-8},
     mrnumber = {3336028},
     zbl = {06433724},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/}
}
TY  - JOUR
AU  - Nau, Tobias
TI  - The $L^p$-Helmholtz projection in finite cylinders
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 119
EP  - 134
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/
DO  - 10.1007/s10587-015-0163-8
LA  - en
ID  - 10_1007_s10587_015_0163_8
ER  - 
%0 Journal Article
%A Nau, Tobias
%T The $L^p$-Helmholtz projection in finite cylinders
%J Czechoslovak Mathematical Journal
%D 2015
%P 119-134
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/
%R 10.1007/s10587-015-0163-8
%G en
%F 10_1007_s10587_015_0163_8
Nau, Tobias. The $L^p$-Helmholtz projection in finite cylinders. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134. doi : 10.1007/s10587-015-0163-8. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/

Cité par Sources :