The $L^p$-Helmholtz projection in finite cylinders
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article we prove for $1$ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.
DOI :
10.1007/s10587-015-0163-8
Classification :
35J20, 35J25, 35Q30, 42B15, 46E40
Keywords: Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal R$-boundedness; reflection technique; fluid dynamics
Keywords: Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal R$-boundedness; reflection technique; fluid dynamics
@article{10_1007_s10587_015_0163_8,
author = {Nau, Tobias},
title = {The $L^p${-Helmholtz} projection in finite cylinders},
journal = {Czechoslovak Mathematical Journal},
pages = {119--134},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2015},
doi = {10.1007/s10587-015-0163-8},
mrnumber = {3336028},
zbl = {06433724},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/}
}
TY - JOUR AU - Nau, Tobias TI - The $L^p$-Helmholtz projection in finite cylinders JO - Czechoslovak Mathematical Journal PY - 2015 SP - 119 EP - 134 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/ DO - 10.1007/s10587-015-0163-8 LA - en ID - 10_1007_s10587_015_0163_8 ER -
Nau, Tobias. The $L^p$-Helmholtz projection in finite cylinders. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134. doi: 10.1007/s10587-015-0163-8
Cité par Sources :