Keywords: Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal R$-boundedness; reflection technique; fluid dynamics
@article{10_1007_s10587_015_0163_8,
author = {Nau, Tobias},
title = {The $L^p${-Helmholtz} projection in finite cylinders},
journal = {Czechoslovak Mathematical Journal},
pages = {119--134},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0163-8},
mrnumber = {3336028},
zbl = {06433724},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/}
}
TY - JOUR AU - Nau, Tobias TI - The $L^p$-Helmholtz projection in finite cylinders JO - Czechoslovak Mathematical Journal PY - 2015 SP - 119 EP - 134 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0163-8/ DO - 10.1007/s10587-015-0163-8 LA - en ID - 10_1007_s10587_015_0163_8 ER -
Nau, Tobias. The $L^p$-Helmholtz projection in finite cylinders. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 119-134. doi: 10.1007/s10587-015-0163-8
[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. I. Unique solvability. J. Math. Fluid Mech. 7 (2005), 201-222. | DOI | MR | Zbl
[2] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}. {$H_\infty$}-calculus. J. Math. Fluid Mech. 7 (2005), 223-260. | DOI | MR | Zbl
[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311-343. | DOI | MR | Zbl
[4] Bernstein, S.: Sur la convergence absolue des séries trigonométriques. C. R. Acad. Sci., Paris 158 French (1914), 1661-1663.
[5] Bogovskiĭ, M. E.: Decomposition of {$L_p(\Omega;{\mathbb R}^n)$} into a direct sum of subspaces of solenoidal and potential vector fields. Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786. | MR
[6] Bu, S.: On operator-valued Fourier multipliers. Sci. China, Ser. A 49 (2006), 574-576. | DOI | MR | Zbl
[7] Bu, S., Kim, J.-M.: Operator-valued Fourier multiplier theorems on {$L_p$}-spaces on {$\mathbb T^d$}. Arch. Math. 82 (2004), 404-414. | MR
[8] Denk, R., Hieber, M., Prüss, J.: {$\mathcal R$}-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788 (2003), 114. | MR
[9] Farwig, R.: Weighted {$L^q$}-{H}elmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8 (2003), 357-384. | MR | Zbl
[10] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248. | DOI | MR | Zbl
[11] Farwig, R., Myong-Hwan, R.: Resolvent estimates and maximal regularity in weighted {$L^q$}-spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid Mech. 10 (2008), 352-387. | DOI | MR | Zbl
[12] Farwig, R., Ri, M.-H.: An {$L^q(L^2)$}-theory of the generalized Stokes resolvent system in infinite cylinders. Stud. Math. 178 (2007), 197-216. | DOI | MR | Zbl
[13] Farwig, R., Ri, M.-H.: Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280 (2007), 1061-1082. | DOI | MR | Zbl
[14] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994). | MR | Zbl
[15] Kunstmann, P. C., Weis, L.: Maximal {$L_p$}-regularity for parabolic equations, Fourier multiplier theorems and {$H^\infty$}-functional calculus. Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311. | MR | Zbl
[16] Nau, T.: $ L^ P$-Theory of Cylindrical Boundary Value Problems. Springer Spektrum Wiesbaden (2012). | MR | Zbl
[17] Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010). | MR | Zbl
[18] Štrkalj, Ž., Weis, L.: On operator-valued Fourier multiplier theorems. Trans. Am. Math. Soc. 359 (2007), 3529-3547. | DOI | MR | Zbl
Cité par Sources :