Generalized 3-edge-connectivity of Cartesian product graphs
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 107-117.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The generalized $k$-connectivity $\kappa _{k}(G)$ of a graph $G$ was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized $k$-edge-connectivity which is defined as $\lambda _k(G) = \min \{\lambda (S)\colon S \subseteq V(G)$ and $|S|= k\}$, where $\lambda (S)$ denotes the maximum number $\ell $ of pairwise edge-disjoint trees $T_1, T_2, \ldots , T_{\ell }$ in $G$ such that $S\subseteq V(T_i)$ for $1\leq i\leq \ell $. In this paper we prove that for any two connected graphs $G$ and $H$ we have $\lambda _3(G\square H)\geq \lambda _3(G)+\lambda _3(H)$, where $G\square H$ is the Cartesian product of $G$ and $H$. Moreover, the bound is sharp. We also obtain the precise values for the generalized 3-edge-connectivity of the Cartesian product of some special graph classes.
DOI : 10.1007/s10587-015-0162-9
Classification : 05C40, 05C76
Keywords: generalized connectivity; generalized edge-connectivity; Cartesian product
@article{10_1007_s10587_015_0162_9,
     author = {Sun, Yuefang},
     title = {Generalized 3-edge-connectivity of {Cartesian} product graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {107--117},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2015},
     doi = {10.1007/s10587-015-0162-9},
     mrnumber = {3336027},
     zbl = {06433723},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0162-9/}
}
TY  - JOUR
AU  - Sun, Yuefang
TI  - Generalized 3-edge-connectivity of Cartesian product graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 107
EP  - 117
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0162-9/
DO  - 10.1007/s10587-015-0162-9
LA  - en
ID  - 10_1007_s10587_015_0162_9
ER  - 
%0 Journal Article
%A Sun, Yuefang
%T Generalized 3-edge-connectivity of Cartesian product graphs
%J Czechoslovak Mathematical Journal
%D 2015
%P 107-117
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0162-9/
%R 10.1007/s10587-015-0162-9
%G en
%F 10_1007_s10587_015_0162_9
Sun, Yuefang. Generalized 3-edge-connectivity of Cartesian product graphs. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 107-117. doi : 10.1007/s10587-015-0162-9. http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0162-9/

Cité par Sources :