On coincidence of Pettis and McShane integrability
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 83-106
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.
R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.
DOI : 10.1007/s10587-015-0161-x
Classification : 46B26, 46G10
Keywords: Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation
@article{10_1007_s10587_015_0161_x,
     author = {Fabian, Mari\'an},
     title = {On coincidence of {Pettis} and {McShane} integrability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {83--106},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0161-x},
     mrnumber = {3336026},
     zbl = {06433722},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0161-x/}
}
TY  - JOUR
AU  - Fabian, Marián
TI  - On coincidence of Pettis and McShane integrability
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 83
EP  - 106
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0161-x/
DO  - 10.1007/s10587-015-0161-x
LA  - en
ID  - 10_1007_s10587_015_0161_x
ER  - 
%0 Journal Article
%A Fabian, Marián
%T On coincidence of Pettis and McShane integrability
%J Czechoslovak Mathematical Journal
%D 2015
%P 83-106
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0161-x/
%R 10.1007/s10587-015-0161-x
%G en
%F 10_1007_s10587_015_0161_x
Fabian, Marián. On coincidence of Pettis and McShane integrability. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 83-106. doi: 10.1007/s10587-015-0161-x

[1] Argyros, S. A., Arvanitakis, A. D., Mercourakis, S. K.: Talagrand's $K_{\sigma\delta}$ problem. Topology Appl. 155 (2008), 1737-1755. | DOI | MR | Zbl

[2] Argyros, S., Farmaki, V.: On the structure of weakly compact subsets of Hilbert spaces and applications to the geometry of Banach spaces. Trans. Am. Math. Soc. 289 (1985), 409-427. | DOI | MR | Zbl

[3] Argyros, S., Mercourakis, S., Negrepontis, S.: Functional-analytic properties of Corson-compact spaces. Stud. Math. 89 (1988), 197-229. | DOI | MR | Zbl

[4] Avilés, A., Plebanek, G., Rodríguez, J.: The McShane integral in weakly compactly generated spaces. J. Funct. Anal. 259 (2010), 2776-2792. | DOI | MR | Zbl

[5] Benyamini, Y., Starbird, T.: Embedding weakly compact sets into Hilbert space. Isr. J. Math. 23 (1976), 137-141. | DOI | MR | Zbl

[6] Číek, P., Fabian, M.: Adequate compacta which are Gul'ko or Talagrand. Serdica Math. J. 29 (2003), 55-64. | MR

[7] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill. J. Math. 47 (2003), 1177-1187. | DOI | MR

[8] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285-306. | DOI | MR

[9] Fabian, M. J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts Wiley, New York (1997). | MR | Zbl

[10] Fabian, M., Godefroy, G., Montesinos, V., Zizler, V.: Inner characterizations of weakly compactly generated Banach spaces and their relatives. J. Math. Anal. Appl. 297 (2004), 419-455. | DOI | MR | Zbl

[11] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics Springer, Berlin (2011). | MR | Zbl

[12] Farmaki, V.: The structure of Eberlein, uniformly Eberlein and Talagrand compact spaces in $\Sigma(R^\Gamma)$. Fundam. Math. 128 (1987), 15-28. | DOI | MR

[13] Fremlin, D. H.: Measure Theory Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original. Torres Fremlin Colchester (2006). | MR | Zbl

[14] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | Zbl

[15] Hájek, P., Montesinos, V., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics Springer, New York (2008). | MR | Zbl

[16] Leiderman, A. G., Sokolov, G. A.: Adequate families of sets and Corson compacts. Commentat. Math. Univ. Carol. 25 (1984), 233-246. | MR | Zbl

[17] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 92 Springer, Berlin (1977). | MR | Zbl

[18] Lukeš, J., Malý, J.: Measure and Integral. Matfyzpress Praha (1995). | Zbl

[19] Marciszewski, W.: On sequential convergence in weakly compact subsets of Banach spaces. Stud. Math. 112 (1995), 189-194. | DOI | MR | Zbl

[20] Martin, D. A., Solovay, R. M.: Internal Cohen extensions. Ann. Math. Logic 2 (1970), 143-178. | DOI | MR | Zbl

[21] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10 World Scientific, Hackensack (2005). | MR | Zbl

[22] Talagrand, M.: Espaces de Banachs faiblement $\mathcal K$-analytiques. Ann. Math. 110 (1979), 407-438 French. | DOI | MR

Cité par Sources :