On coincidence of Pettis and McShane integrability
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 83-106
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.
DOI :
10.1007/s10587-015-0161-x
Classification :
46B26, 46G10
Keywords: Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation
Keywords: Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation
@article{10_1007_s10587_015_0161_x,
author = {Fabian, Mari\'an},
title = {On coincidence of {Pettis} and {McShane} integrability},
journal = {Czechoslovak Mathematical Journal},
pages = {83--106},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2015},
doi = {10.1007/s10587-015-0161-x},
mrnumber = {3336026},
zbl = {06433722},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0161-x/}
}
TY - JOUR AU - Fabian, Marián TI - On coincidence of Pettis and McShane integrability JO - Czechoslovak Mathematical Journal PY - 2015 SP - 83 EP - 106 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0161-x/ DO - 10.1007/s10587-015-0161-x LA - en ID - 10_1007_s10587_015_0161_x ER -
Fabian, Marián. On coincidence of Pettis and McShane integrability. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 83-106. doi: 10.1007/s10587-015-0161-x
Cité par Sources :