Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 61-82
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X, d, \mu )$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu $. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup ${\rm e}^{-tL}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein's square function ${\mathcal G}_{\delta }(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^{p}(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0
Let $(X, d, \mu )$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu $. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup ${\rm e}^{-tL}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein's square function ${\mathcal G}_{\delta }(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^{p}(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0$.
DOI : 10.1007/s10587-015-0160-y
Classification : 42B15, 42B25, 47F05
Keywords: non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space
@article{10_1007_s10587_015_0160_y,
     author = {Yan, Xuefang},
     title = {Boundedness of {Stein's} square functions and {Bochner-Riesz} means associated to operators on {Hardy} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {61--82},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0160-y},
     mrnumber = {3336025},
     zbl = {06433721},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0160-y/}
}
TY  - JOUR
AU  - Yan, Xuefang
TI  - Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 61
EP  - 82
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0160-y/
DO  - 10.1007/s10587-015-0160-y
LA  - en
ID  - 10_1007_s10587_015_0160_y
ER  - 
%0 Journal Article
%A Yan, Xuefang
%T Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces
%J Czechoslovak Mathematical Journal
%D 2015
%P 61-82
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0160-y/
%R 10.1007/s10587-015-0160-y
%G en
%F 10_1007_s10587_015_0160_y
Yan, Xuefang. Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 61-82. doi: 10.1007/s10587-015-0160-y

[1] Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18 (2008), 192-248. | DOI | MR | Zbl

[2] Blunck, S., Kunstmann, P. C.: Generalized Gaussian estimates and the Legendre transform. J. Oper. Theory 53 (2005), 351-365. | MR | Zbl

[3] Bui, T. A., Duong, X. T.: Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces. Adv. Differ. Equ. 18 (2013), 459-494. | MR | Zbl

[4] Chen, P.: Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Colloq. Math. 133 (2013), 51-65. | DOI | MR | Zbl

[5] Chen, P., Duong, X. T., Yan, L.: $L^p$-bounds for Stein's square functions associated to operators and applications to spectral multipliers. J. Math. Soc. Japan. 65 (2013), 389-409. | DOI | MR | Zbl

[6] Christ, M.: $L^p$ bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328 (1991), 73-81. | MR

[7] Coifman, R. R., Weiss, G.: Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals. Lecture Notes in Mathematics 242 Springer, Berlin (1971), French. | DOI | MR | Zbl

[8] Davies, E. B.: Limits on $L^{p}$ regularity of self-adjoint elliptic operators. J. Differ. Equations 135 (1997), 83-102. | DOI | MR

[9] Duong, X. T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264 (2013), 1409-1437. | DOI | MR | Zbl

[10] Duong, X. T., Ouhabaz, E. M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), 443-485. | DOI | MR

[11] Duong, X. T., Yan, L.: Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. J. Math. Soc. Japan. 63 (2011), 295-319. | DOI | MR | Zbl

[12] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214 (2011), no. 1007, 78 pages. | MR | Zbl

[13] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344 (2009), 37-116. | DOI | MR | Zbl

[14] Igari, S.: A note on the Littlewood-Paley function $g^{\ast}(f)$. Tohoku Math. J., II. Ser. 18 (1966), 232-235. | DOI | MR

[15] Igari, S., Kuratsubo, S.: A sufficient condition for $L^p$-multipliers. Pac. J. Math. 38 (1971), 85-88. | DOI | MR

[16] Kaneko, M., Sunouchi, G. I.: On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions. Tohoku. Math. J., II. Ser. 37 (1985), 343-365. | DOI | MR | Zbl

[17] Kunstmann, P. C., Uhl, M.: Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces. Available at http://arXiv:1209.0358v1 (2012). | MR

[18] Ouhabaz, E. M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). | MR | Zbl

[19] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. Academic Press New York (1980). | MR | Zbl

[20] Schreieck, G., Voigt, J.: Stability of the $L_{p}$-spectrum of Schrödinger operators with form-small negative part of the potential. Functional Analysis K. D. Bierstedt et al. Proceedings of the Essen Conference, 1991. Lect. Notes Pure Appl. Math. 150 (1994), 95-105 Dekker, New York. | MR

[21] Stein, E. M.: Localization and summability of multiple Fourier series. Acta Math. 100 (1958), 93-147. | DOI | MR | Zbl

[22] Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wissenschaften 123 Springer, Berlin (1978). | MR | Zbl

Cité par Sources :