Keywords: non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space
@article{10_1007_s10587_015_0160_y,
author = {Yan, Xuefang},
title = {Boundedness of {Stein's} square functions and {Bochner-Riesz} means associated to operators on {Hardy} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {61--82},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0160-y},
mrnumber = {3336025},
zbl = {06433721},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0160-y/}
}
TY - JOUR AU - Yan, Xuefang TI - Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces JO - Czechoslovak Mathematical Journal PY - 2015 SP - 61 EP - 82 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0160-y/ DO - 10.1007/s10587-015-0160-y LA - en ID - 10_1007_s10587_015_0160_y ER -
%0 Journal Article %A Yan, Xuefang %T Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces %J Czechoslovak Mathematical Journal %D 2015 %P 61-82 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0160-y/ %R 10.1007/s10587-015-0160-y %G en %F 10_1007_s10587_015_0160_y
Yan, Xuefang. Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 61-82. doi: 10.1007/s10587-015-0160-y
[1] Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18 (2008), 192-248. | DOI | MR | Zbl
[2] Blunck, S., Kunstmann, P. C.: Generalized Gaussian estimates and the Legendre transform. J. Oper. Theory 53 (2005), 351-365. | MR | Zbl
[3] Bui, T. A., Duong, X. T.: Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces. Adv. Differ. Equ. 18 (2013), 459-494. | MR | Zbl
[4] Chen, P.: Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Colloq. Math. 133 (2013), 51-65. | DOI | MR | Zbl
[5] Chen, P., Duong, X. T., Yan, L.: $L^p$-bounds for Stein's square functions associated to operators and applications to spectral multipliers. J. Math. Soc. Japan. 65 (2013), 389-409. | DOI | MR | Zbl
[6] Christ, M.: $L^p$ bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328 (1991), 73-81. | MR
[7] Coifman, R. R., Weiss, G.: Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals. Lecture Notes in Mathematics 242 Springer, Berlin (1971), French. | DOI | MR | Zbl
[8] Davies, E. B.: Limits on $L^{p}$ regularity of self-adjoint elliptic operators. J. Differ. Equations 135 (1997), 83-102. | DOI | MR
[9] Duong, X. T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264 (2013), 1409-1437. | DOI | MR | Zbl
[10] Duong, X. T., Ouhabaz, E. M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), 443-485. | DOI | MR
[11] Duong, X. T., Yan, L.: Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. J. Math. Soc. Japan. 63 (2011), 295-319. | DOI | MR | Zbl
[12] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214 (2011), no. 1007, 78 pages. | MR | Zbl
[13] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344 (2009), 37-116. | DOI | MR | Zbl
[14] Igari, S.: A note on the Littlewood-Paley function $g^{\ast}(f)$. Tohoku Math. J., II. Ser. 18 (1966), 232-235. | DOI | MR
[15] Igari, S., Kuratsubo, S.: A sufficient condition for $L^p$-multipliers. Pac. J. Math. 38 (1971), 85-88. | DOI | MR
[16] Kaneko, M., Sunouchi, G. I.: On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions. Tohoku. Math. J., II. Ser. 37 (1985), 343-365. | DOI | MR | Zbl
[17] Kunstmann, P. C., Uhl, M.: Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces. Available at http://arXiv:1209.0358v1 (2012). | MR
[18] Ouhabaz, E. M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). | MR | Zbl
[19] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. Academic Press New York (1980). | MR | Zbl
[20] Schreieck, G., Voigt, J.: Stability of the $L_{p}$-spectrum of Schrödinger operators with form-small negative part of the potential. Functional Analysis K. D. Bierstedt et al. Proceedings of the Essen Conference, 1991. Lect. Notes Pure Appl. Math. 150 (1994), 95-105 Dekker, New York. | MR
[21] Stein, E. M.: Localization and summability of multiple Fourier series. Acta Math. 100 (1958), 93-147. | DOI | MR | Zbl
[22] Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wissenschaften 123 Springer, Berlin (1978). | MR | Zbl
Cité par Sources :