Keywords: Riemannian homogeneous manifold; Einstein manifold; weakly Einstein manifold
@article{10_1007_s10587_015_0159_4,
author = {Arias-Marco, Teresa and Kowalski, Old\v{r}ich},
title = {Classification of $4$-dimensional homogeneous weakly {Einstein} manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {21--59},
year = {2015},
volume = {65},
number = {1},
doi = {10.1007/s10587-015-0159-4},
mrnumber = {3336024},
zbl = {06433720},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0159-4/}
}
TY - JOUR AU - Arias-Marco, Teresa AU - Kowalski, Oldřich TI - Classification of $4$-dimensional homogeneous weakly Einstein manifolds JO - Czechoslovak Mathematical Journal PY - 2015 SP - 21 EP - 59 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0159-4/ DO - 10.1007/s10587-015-0159-4 LA - en ID - 10_1007_s10587_015_0159_4 ER -
%0 Journal Article %A Arias-Marco, Teresa %A Kowalski, Oldřich %T Classification of $4$-dimensional homogeneous weakly Einstein manifolds %J Czechoslovak Mathematical Journal %D 2015 %P 21-59 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0159-4/ %R 10.1007/s10587-015-0159-4 %G en %F 10_1007_s10587_015_0159_4
Arias-Marco, Teresa; Kowalski, Oldřich. Classification of $4$-dimensional homogeneous weakly Einstein manifolds. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 21-59. doi: 10.1007/s10587-015-0159-4
[1] Arias-Marco, T., Kowalski, O.: Classification of $4$-dimensional homogeneous D'Atri spaces. Czech. Math. J. 58 (2008), 203-239. | DOI | MR | Zbl
[2] Bergery, L. Bérard: Four-dimensional homogeneous Riemannian spaces. Riemannian Geometry in Dimension 4. Papers from the Arthur Besse seminar held at the Université de Paris VII, Paris, 1978/1979 L. Bérard Bergery et al. Mathematical Texts 3 CEDIC, Paris (1981), French. | MR
[3] Boeckx, E., Vanhecke, L.: Unit tangent sphere bundles with constant scalar curvature. Czech. Math. J. 51 (2001), 523-544. | DOI | MR | Zbl
[4] Graaf, W. A. de: Classification of solvable Lie algebras. Exp. Math. 14 (2005), 15-25. | DOI | MR | Zbl
[5] Euh, Y., Park, J., Sekigawa, K.: A curvature identity on a $4$-dimensional Riemannian manifold. Result. Math. 63 (2013), 107-114. | DOI | MR | Zbl
[6] Euh, Y., Park, J., Sekigawa, K.: A generalization of a $4$-dimensional Einstein manifold. Math. Slovaca 63 (2013), 595-610. | MR
[7] Euh, Y., Park, J., Sekigawa, K.: Critical metrics for quadratic functionals in the curvature on $4$-dimensional manifolds. Differ. Geom. Appl. 29 (2011), 642-646. | DOI | MR | Zbl
[8] Gray, A., Willmore, T. J.: Mean-value theorems for Riemannian manifolds. Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. | DOI | MR | Zbl
[9] Jensen, G. R.: Homogeneous Einstein spaces of dimension four. J. Differ. Geom. 3 (1969), 309-349. | DOI | MR | Zbl
[10] Milnor, J. W.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293-329. | DOI | MR | Zbl
Cité par Sources :