On upper triangular nonnegative matrices
Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 1-20 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We first investigate factorizations of elements of the semigroup $S$ of upper triangular matrices with nonnegative entries and nonzero determinant, provide a formula for $\rho (S)$, and, given $A\in S$, also provide formulas for $l(A)$, $L(A)$ and $\rho (A)$. As a consequence, open problem 2 and problem 4 presented in N. Baeth et al. (2011), are partly answered. Secondly, we study the semigroup of upper triangular matrices with only positive integral entries, compute some invariants of such semigroup, and also partly answer open Problem 1 and Problem 3 in N. Baeth et al. (2011).
We first investigate factorizations of elements of the semigroup $S$ of upper triangular matrices with nonnegative entries and nonzero determinant, provide a formula for $\rho (S)$, and, given $A\in S$, also provide formulas for $l(A)$, $L(A)$ and $\rho (A)$. As a consequence, open problem 2 and problem 4 presented in N. Baeth et al. (2011), are partly answered. Secondly, we study the semigroup of upper triangular matrices with only positive integral entries, compute some invariants of such semigroup, and also partly answer open Problem 1 and Problem 3 in N. Baeth et al. (2011).
DOI : 10.1007/s10587-015-0158-5
Classification : 11Y05, 15A23
Keywords: upper triangular; nonnegative matrix; factorization; matrix semigroup
@article{10_1007_s10587_015_0158_5,
     author = {Chen, Yizhi and Zhao, Xianzhong and Liu, Zhongzhu},
     title = {On upper triangular nonnegative matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--20},
     year = {2015},
     volume = {65},
     number = {1},
     doi = {10.1007/s10587-015-0158-5},
     mrnumber = {3336023},
     zbl = {06433719},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0158-5/}
}
TY  - JOUR
AU  - Chen, Yizhi
AU  - Zhao, Xianzhong
AU  - Liu, Zhongzhu
TI  - On upper triangular nonnegative matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2015
SP  - 1
EP  - 20
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0158-5/
DO  - 10.1007/s10587-015-0158-5
LA  - en
ID  - 10_1007_s10587_015_0158_5
ER  - 
%0 Journal Article
%A Chen, Yizhi
%A Zhao, Xianzhong
%A Liu, Zhongzhu
%T On upper triangular nonnegative matrices
%J Czechoslovak Mathematical Journal
%D 2015
%P 1-20
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-015-0158-5/
%R 10.1007/s10587-015-0158-5
%G en
%F 10_1007_s10587_015_0158_5
Chen, Yizhi; Zhao, Xianzhong; Liu, Zhongzhu. On upper triangular nonnegative matrices. Czechoslovak Mathematical Journal, Tome 65 (2015) no. 1, pp. 1-20. doi: 10.1007/s10587-015-0158-5

[1] Adams, D., Ardila, R., Hannasch, D., Kosh, A., McCarthy, H., Ponomarenko, V., Rosenbaum, R.: Bifurcus semigroups and rings. Involve 2 (2009), 351-356. | DOI | MR | Zbl

[2] Baeth, N., Ponomarenko, V., Adams, D., Ardila, R., Hannasch, D., Kosh, A., McCarthy, H., Rosenbaum, R.: Number theory of matrix semigroups. Linear Algebra Appl. 434 (2011), 694-711. | MR | Zbl

[3] Chuan, J. Ch., Chuan, W. F.: Factorizations in a semigroup of integral matrices. Linear Multilinear Algebra 18 (1985), 213-223. | DOI | MR | Zbl

[4] Chuan, J. Ch., Chuan, W. F.: Factorability of positive-integral matrices of prime determinants. Bull. Inst. Math., Acad. Sin. 14 (1986), 11-20. | MR | Zbl

[5] Cohn, P. M.: Noncommutative unique factorization domains. Trans. Am. Math. Soc. 109 (1963), 313-331 Errata. Ibid. 119 (1965), 552. | DOI | MR | Zbl

[6] Halava, V., Harju, T.: On Markov's undecidability theorem for integer matrices. Semigroup Forum 75 (2007), 173-180. | DOI | MR | Zbl

[7] Jacobson, B.: Matrix number theory. An example of nonunique factorization. Am. Math. Mon. 72 (1965), 399-402. | DOI | MR | Zbl

[8] Jacobson, B., Wisner, R. J.: Matrix number theory. I: Factorization of $2 \times 2$ unimodular matrices. Publ. Math. Debrecen 13 (1966), 67-72. | MR

Cité par Sources :