On the complexity of some classes of Banach spaces and non-universality
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1123-1147
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in ${\rm SB}$. At last, we give several applications of those results to non-universality results.
These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in ${\rm SB}$. At last, we give several applications of those results to non-universality results.
DOI : 10.1007/s10587-014-0157-y
Classification : 46B20
Keywords: Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree
@article{10_1007_s10587_014_0157_y,
     author = {Braga, Bruno M.},
     title = {On the complexity of some classes of {Banach} spaces and non-universality},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1123--1147},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0157-y},
     mrnumber = {3304802},
     zbl = {06433718},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0157-y/}
}
TY  - JOUR
AU  - Braga, Bruno M.
TI  - On the complexity of some classes of Banach spaces and non-universality
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 1123
EP  - 1147
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0157-y/
DO  - 10.1007/s10587-014-0157-y
LA  - en
ID  - 10_1007_s10587_014_0157_y
ER  - 
%0 Journal Article
%A Braga, Bruno M.
%T On the complexity of some classes of Banach spaces and non-universality
%J Czechoslovak Mathematical Journal
%D 2014
%P 1123-1147
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0157-y/
%R 10.1007/s10587-014-0157-y
%G en
%F 10_1007_s10587_014_0157_y
Braga, Bruno M. On the complexity of some classes of Banach spaces and non-universality. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1123-1147. doi: 10.1007/s10587-014-0157-y

[1] Albiac, F., Kalton, N. J.: Topics in Banach Space Theory. Graduate Texts in Mathematics 233 Springer, Berlin (2006). | MR

[2] Argyros, S. A., Dodos, P.: Genericity and amalgamation of classes of Banach spaces. Adv. Math. 209 (2007), 666-748. | DOI | MR | Zbl

[3] Argyros, S. A., Haydon, R. G.: A hereditarily indecomposable $\mathcal{L}_\infty$-space that solves the scalar-plus-compact problem. Acta Math. 206 (2011), 1-54. | DOI | MR | Zbl

[4] Bahreini, M., Bator, E., Ghenciu, I.: Complemented subspaces of linear bounded operators. Can. Math. Bull. 55 (2012), 449-461. | DOI | MR | Zbl

[5] Beauzamy, B.: Banach-Saks properties and spreading models. Math. Scand. 44 (1979), 357-384. | DOI | MR | Zbl

[6] Bossard, B.: A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fundam. Math. 172 (2002), 117-152. | DOI | MR | Zbl

[7] Bourgain, J., Delbaen, F.: A class of special $\mathcal{L}_\infty$ spaces. Acta Math. 145 (1980), 155-176. | DOI | MR

[8] Diestel, J.: A survey of results related to the Dunford-Pettis property. Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces Contemp. Math. 2 American Mathematical Society (1980), 15-60. | MR | Zbl

[9] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). | MR | Zbl

[10] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15 American Mathematical Society, Providence (1977). | MR | Zbl

[11] Diestel, J., Seifert, C. J.: The Banach-Saks ideal, I. Operators acting on $C(\Omega)$. Commentat. Math. 1 (1978), 109-118. | MR | Zbl

[12] Dodos, P.: Banach Spaces and Descriptive Set Theory: Selected Topics. Lecture Notes in Mathematics 1993 Springer, Berlin (2010). | MR | Zbl

[13] Fakhoury, H.: Sur les espaces de Banach ne contenant pas $\ell^1(\mathbb N)$. French Math. Scand. 41 (1977), 277-289. | DOI | MR

[14] Farnum, N. R.: The Banach-Saks theorem in $C(S)$. Can. J. Math. 26 (1974), 91-97. | DOI | MR | Zbl

[15] Girardi, M.: Dentability, trees, and Dunford-Pettis operators on $L_1$. Pac. J. Math. 148 (1991), 59-79 correction ibid. 157 389-394 (1993). | DOI | MR

[16] Huang, S.-Z., Neerven, J. M. A. M. van: $B$-convexity, the analytic Radon-Nikodym property, and individual stability of $C_0$-semigroups. J. Math. Anal. Appl. 231 (1999), 1-20. | DOI | MR

[17] James, R. C.: Unconditional bases and the Radon-Nikodym property. Stud. Math. 95 (1990), 255-262. | DOI | MR | Zbl

[18] James, R. C.: Structures of Banach spaces: Radon-Nikodym and other properties. General Topology and Modern Analysis Proc. Conf., Riverside, 1980 L. F. McAuley, et al. Academic Press, New York (1981), 347-363. | MR

[19] James, R. C.: Bases and reflexivity of Banach spaces. Ann. Math. (2) 52 (1950), 518-527. | DOI | MR | Zbl

[20] Johnson, W. B., (eds.), J. Lindenstrauss: Handbook of the Geometry of Banach Spaces. Vol. 1. Elsevier, Amsterdam (2001). | MR

[21] Kechris, A. S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics 156 Springer, Berlin (1995). | MR | Zbl

[22] Ostrovskii, M. I.: Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry. Quaest. Math. 17 (1994), 259-319. | DOI | MR

[23] Partington, J. R.: On the Banach-Saks property. Math. Proc. Camb. Philos. Soc. 82 (1977), 369-374. | DOI | MR | Zbl

[24] Pełczyński, A.: Universal bases. Stud. Math. 32 (1969), 247-268. | DOI | MR | Zbl

[25] Pełczyński, A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648. | MR | Zbl

[26] Puglisi, D.: The position of $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$. Glasg. Math. J. 56 (2014), 409-417. | MR | Zbl

[27] Rosenthal, H. P.: A characterization of Banach spaces containing $\ell^1$. Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. | DOI | MR

[28] Rosenthal, H. P.: On injective Banach spaces and the spaces $L^\infty(\mu)$ for finite measures $\mu$. Acta Math. 124 (1970), 205-248. | DOI | MR

[29] Schlumprech, Th.: Notes on Descriptive Set Theory and Applications to Banach Spaces. Class notes for Reading Course in Spring/Summer (2008).

[30] Tanbay, B.: Direct sums and the Schur property. Turk. J. Math. 22 (1998), 349-354. | MR | Zbl

Cité par Sources :