Keywords: Banach-Saks operator; Dunford-Pettis property; analytic Radon-Nikodym property; complete continuous property; Schur property; unconditionally converging operator; weakly compact operator; local structure; non-universality; $\ell _p$-Baire sum; descriptive set theory; tree
@article{10_1007_s10587_014_0157_y,
author = {Braga, Bruno M.},
title = {On the complexity of some classes of {Banach} spaces and non-universality},
journal = {Czechoslovak Mathematical Journal},
pages = {1123--1147},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0157-y},
mrnumber = {3304802},
zbl = {06433718},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0157-y/}
}
TY - JOUR AU - Braga, Bruno M. TI - On the complexity of some classes of Banach spaces and non-universality JO - Czechoslovak Mathematical Journal PY - 2014 SP - 1123 EP - 1147 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0157-y/ DO - 10.1007/s10587-014-0157-y LA - en ID - 10_1007_s10587_014_0157_y ER -
%0 Journal Article %A Braga, Bruno M. %T On the complexity of some classes of Banach spaces and non-universality %J Czechoslovak Mathematical Journal %D 2014 %P 1123-1147 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0157-y/ %R 10.1007/s10587-014-0157-y %G en %F 10_1007_s10587_014_0157_y
Braga, Bruno M. On the complexity of some classes of Banach spaces and non-universality. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1123-1147. doi: 10.1007/s10587-014-0157-y
[1] Albiac, F., Kalton, N. J.: Topics in Banach Space Theory. Graduate Texts in Mathematics 233 Springer, Berlin (2006). | MR
[2] Argyros, S. A., Dodos, P.: Genericity and amalgamation of classes of Banach spaces. Adv. Math. 209 (2007), 666-748. | DOI | MR | Zbl
[3] Argyros, S. A., Haydon, R. G.: A hereditarily indecomposable $\mathcal{L}_\infty$-space that solves the scalar-plus-compact problem. Acta Math. 206 (2011), 1-54. | DOI | MR | Zbl
[4] Bahreini, M., Bator, E., Ghenciu, I.: Complemented subspaces of linear bounded operators. Can. Math. Bull. 55 (2012), 449-461. | DOI | MR | Zbl
[5] Beauzamy, B.: Banach-Saks properties and spreading models. Math. Scand. 44 (1979), 357-384. | DOI | MR | Zbl
[6] Bossard, B.: A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fundam. Math. 172 (2002), 117-152. | DOI | MR | Zbl
[7] Bourgain, J., Delbaen, F.: A class of special $\mathcal{L}_\infty$ spaces. Acta Math. 145 (1980), 155-176. | DOI | MR
[8] Diestel, J.: A survey of results related to the Dunford-Pettis property. Proc. Conf. on Integration, Topology, and Geometry in Linear Spaces Contemp. Math. 2 American Mathematical Society (1980), 15-60. | MR | Zbl
[9] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). | MR | Zbl
[10] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15 American Mathematical Society, Providence (1977). | MR | Zbl
[11] Diestel, J., Seifert, C. J.: The Banach-Saks ideal, I. Operators acting on $C(\Omega)$. Commentat. Math. 1 (1978), 109-118. | MR | Zbl
[12] Dodos, P.: Banach Spaces and Descriptive Set Theory: Selected Topics. Lecture Notes in Mathematics 1993 Springer, Berlin (2010). | MR | Zbl
[13] Fakhoury, H.: Sur les espaces de Banach ne contenant pas $\ell^1(\mathbb N)$. French Math. Scand. 41 (1977), 277-289. | DOI | MR
[14] Farnum, N. R.: The Banach-Saks theorem in $C(S)$. Can. J. Math. 26 (1974), 91-97. | DOI | MR | Zbl
[15] Girardi, M.: Dentability, trees, and Dunford-Pettis operators on $L_1$. Pac. J. Math. 148 (1991), 59-79 correction ibid. 157 389-394 (1993). | DOI | MR
[16] Huang, S.-Z., Neerven, J. M. A. M. van: $B$-convexity, the analytic Radon-Nikodym property, and individual stability of $C_0$-semigroups. J. Math. Anal. Appl. 231 (1999), 1-20. | DOI | MR
[17] James, R. C.: Unconditional bases and the Radon-Nikodym property. Stud. Math. 95 (1990), 255-262. | DOI | MR | Zbl
[18] James, R. C.: Structures of Banach spaces: Radon-Nikodym and other properties. General Topology and Modern Analysis Proc. Conf., Riverside, 1980 L. F. McAuley, et al. Academic Press, New York (1981), 347-363. | MR
[19] James, R. C.: Bases and reflexivity of Banach spaces. Ann. Math. (2) 52 (1950), 518-527. | DOI | MR | Zbl
[20] Johnson, W. B., (eds.), J. Lindenstrauss: Handbook of the Geometry of Banach Spaces. Vol. 1. Elsevier, Amsterdam (2001). | MR
[21] Kechris, A. S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics 156 Springer, Berlin (1995). | MR | Zbl
[22] Ostrovskii, M. I.: Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry. Quaest. Math. 17 (1994), 259-319. | DOI | MR
[23] Partington, J. R.: On the Banach-Saks property. Math. Proc. Camb. Philos. Soc. 82 (1977), 369-374. | DOI | MR | Zbl
[24] Pełczyński, A.: Universal bases. Stud. Math. 32 (1969), 247-268. | DOI | MR | Zbl
[25] Pełczyński, A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10 (1962), 641-648. | MR | Zbl
[26] Puglisi, D.: The position of $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$. Glasg. Math. J. 56 (2014), 409-417. | MR | Zbl
[27] Rosenthal, H. P.: A characterization of Banach spaces containing $\ell^1$. Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. | DOI | MR
[28] Rosenthal, H. P.: On injective Banach spaces and the spaces $L^\infty(\mu)$ for finite measures $\mu$. Acta Math. 124 (1970), 205-248. | DOI | MR
[29] Schlumprech, Th.: Notes on Descriptive Set Theory and Applications to Banach Spaces. Class notes for Reading Course in Spring/Summer (2008).
[30] Tanbay, B.: Direct sums and the Schur property. Turk. J. Math. 22 (1998), 349-354. | MR | Zbl
Cité par Sources :