Geodesic mapping onto Kählerian spaces of the first kind
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1113-1122
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper a generalized Kählerian space $\mathbb {G} {\underset 1 {\mathbb {K}}_N}$ of the first kind is considered as a generalized Riemannian space $\mathbb {GR}_N$ with almost complex structure $\smash {F^h_i}$ that is covariantly constant with respect to the first kind of covariant derivative. \endgraf Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings $f\colon \mathbb {GR}_N\to \mathbb {G}\underset 1{\mathbb {\overline {K}}}_N$ with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space $\mathbb {G}{\underset 1 {\mathbb {K}}}_N$.
In the present paper a generalized Kählerian space $\mathbb {G} {\underset 1 {\mathbb {K}}_N}$ of the first kind is considered as a generalized Riemannian space $\mathbb {GR}_N$ with almost complex structure $\smash {F^h_i}$ that is covariantly constant with respect to the first kind of covariant derivative. \endgraf Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings $f\colon \mathbb {GR}_N\to \mathbb {G}\underset 1{\mathbb {\overline {K}}}_N$ with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space $\mathbb {G}{\underset 1 {\mathbb {K}}}_N$.
DOI : 10.1007/s10587-014-0156-z
Classification : 53B05, 53B35
Keywords: geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space
@article{10_1007_s10587_014_0156_z,
     author = {Zlatanovi\'c, Milan and Hinterleitner, Irena and Najdanovi\'c, Marija},
     title = {Geodesic mapping onto {K\"ahlerian} spaces of the first kind},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1113--1122},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0156-z},
     mrnumber = {3304801},
     zbl = {06433717},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0156-z/}
}
TY  - JOUR
AU  - Zlatanović, Milan
AU  - Hinterleitner, Irena
AU  - Najdanović, Marija
TI  - Geodesic mapping onto Kählerian spaces of the first kind
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 1113
EP  - 1122
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0156-z/
DO  - 10.1007/s10587-014-0156-z
LA  - en
ID  - 10_1007_s10587_014_0156_z
ER  - 
%0 Journal Article
%A Zlatanović, Milan
%A Hinterleitner, Irena
%A Najdanović, Marija
%T Geodesic mapping onto Kählerian spaces of the first kind
%J Czechoslovak Mathematical Journal
%D 2014
%P 1113-1122
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0156-z/
%R 10.1007/s10587-014-0156-z
%G en
%F 10_1007_s10587_014_0156_z
Zlatanović, Milan; Hinterleitner, Irena; Najdanović, Marija. Geodesic mapping onto Kählerian spaces of the first kind. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1113-1122. doi: 10.1007/s10587-014-0156-z

[1] Domašev, V. V., Mikeš, J.: On the theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160-163 translated from Matematicheskie Zametki 23 (1978), Russian 297-303. | DOI | MR

[2] Einstein, A.: The Meaning of Relativity. Princeton University Press Princeton, N. J. (1955). | MR | Zbl

[3] Einstein, A.: The Bianchi identities in the generalized theory of gravitation. Can. J. Math. 2 (1950), 120-128. | DOI | MR | Zbl

[4] Einstein, A.: A generalization of the relativistic theory of gravitation. Ann. Math. (2) 46 (1945), 578-584. | DOI | MR | Zbl

[5] Eisenhart, L. P.: Generalized Riemann spaces. Proc. Natl. Acad. Sci. USA 37 (1951), 311-315. | DOI | MR | Zbl

[6] Hinterleitner, I., Mikeš, J.: On {$F$}-planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111-118. | MR | Zbl

[7] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89 (1998), 1334-1353 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 30 (1995), Russian. | DOI | MR

[8] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311-333 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 11 (1994), Russian. | DOI | MR

[9] Mikeš, J.: Geodesic mappings of Ricci 2-symmetric Riemannian spaces. Math. Notes 28 (1981), 922-924 translated from Matematicheskie Zametki 28 313-317 (1980), Russian. | MR

[10] Mikeš, J., Starko, G. A.: $K$-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Proceedings of the 16th Winter School on ``Geometry and Physics'', Srn'ı, Czech Republic, 1996 Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 46 Palermo (1997), 123-127 Jan Slovák et al. | MR

[11] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science Olomouc (2009). | MR | Zbl

[12] Minčić, S. M.: New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199. | MR | Zbl

[13] Minčić, S. M.: Ricci identities in the space of non-symmetric affine connexion. Mat. Vesn., N. Ser. 10 (1973), 161-172. | MR | Zbl

[14] Minčić, S. M., Stanković, M. S.: Equitorsion geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104. | MR | Zbl

[15] Minčić, S., Stanković, M.: On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces. Mat. Vesn. 49 (1997), 27-33. | MR | Zbl

[16] Minčić, S. M., Stanković, M. S., Velimirović, L. S.: Generalized Kählerian spaces. Filomat 15 (2001), 167-174. | MR

[17] Moffat, J. W.: Gravitational theory, galaxy rotation curves and cosmology without dark matter. J. Cosmol. Astropart. Phys. (electronic only) 2005 (2005), Article No. 003, 28 pages. | MR | Zbl

[18] Ōtsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57-78. | MR | Zbl

[19] Prvanović, M.: A note on holomorphically projective transformations of the Kähler spaces. Tensor, New Ser. 35 (1981), 99-104. | MR | Zbl

[20] Pujar, S. S.: On non-metric semi-symmetric complex connection in a Kaehlerian manifold. Bull. Calcutta Math. Soc. 91 (1999), 313-322. | MR | Zbl

[21] Pušić, N.: On a curvature-type invariant of a family of metric holomorphically semi-symmetric connections on anti-Kähler spaces. Indian J. Math. 54 (2012), 57-74. | MR | Zbl

[22] Sinjukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka Moskva Russian (1979). | MR

[23] Stanković, M. S., Minčić, S. M., Velimirović, L. S.: On equitorsion holomorphically projective mappings of generalised Kählerian spaces. Czech. Math. J. 54 (2004), 701-715. | DOI | MR

[24] Stanković, M. S., Zlatanović, M. L., Velimirović, L. S.: Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind. Czech. Math. J. 60 (2010), 635-653. | DOI | MR | Zbl

[25] Tashiro, Y.: On a holomorphically projective correspondence in an almost complex space. Math. J. Okayama Univ. 6 (1957), 147-152. | MR | Zbl

[26] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. International Series of Monographs in Pure and Applied Mathematics 49 Pergamon Press, Macmillan, New York (1965). | MR | Zbl

Cité par Sources :