Methods of analysis of the condition for correct solvability in $L_p (\mathbb R)$ of general Sturm-Liouville equations
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1067-1098
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider the equation $$\label {1} - (r(x)y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R \eqno {(*)} $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and \begin {gather} r>0,\quad q\ge 0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R), \nonumber \\ \lim _{|d|\to \infty }\int _{x-d}^x \frac {{\rm d} t}{r(t)}\cdot \int _{x-d}^x q(t) {\rm d} t=\infty . \nonumber \end {gather} In an earlier paper, we obtained a criterion for correct solvability of ($*$) in $L_p(\mathbb R),$ $p\in (1,\infty ).$ In this criterion, we use values of some auxiliary implicit functions in the coefficients $r$ and $q$ of equation ($*$). Unfortunately, it is usually impossible to compute values of these functions. In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function $f(x)$ for $x\in (a,b)$ through a function $g(x)$ is sharp by order if $c^{-1}|g(x)|\le |f(x)|\le c|g(x)|,$ $x\in (a,b),$ $c=\rm const$) of auxiliary functions, which guarantee efficient study of the problem of correct solvability of ($*$) in $L_p(\mathbb R),$ $p\in (1,\infty ).$
We consider the equation $$\label {1} - (r(x)y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R \eqno {(*)} $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and \begin {gather} r>0,\quad q\ge 0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R), \nonumber \\ \lim _{|d|\to \infty }\int _{x-d}^x \frac {{\rm d} t}{r(t)}\cdot \int _{x-d}^x q(t) {\rm d} t=\infty . \nonumber \end {gather} In an earlier paper, we obtained a criterion for correct solvability of ($*$) in $L_p(\mathbb R),$ $p\in (1,\infty ).$ In this criterion, we use values of some auxiliary implicit functions in the coefficients $r$ and $q$ of equation ($*$). Unfortunately, it is usually impossible to compute values of these functions. In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function $f(x)$ for $x\in (a,b)$ through a function $g(x)$ is sharp by order if $c^{-1}|g(x)|\le |f(x)|\le c|g(x)|,$ $x\in (a,b),$ $c=\rm const$) of auxiliary functions, which guarantee efficient study of the problem of correct solvability of ($*$) in $L_p(\mathbb R),$ $p\in (1,\infty ).$
DOI :
10.1007/s10587-014-0154-1
Classification :
34B24
Keywords: correct solvability; Sturm-Liouville equation
Keywords: correct solvability; Sturm-Liouville equation
@article{10_1007_s10587_014_0154_1,
author = {Chernyavskaya, Nina A. and Shuster, Leonid A.},
title = {Methods of analysis of the condition for correct solvability in $L_p (\mathbb R)$ of general {Sturm-Liouville} equations},
journal = {Czechoslovak Mathematical Journal},
pages = {1067--1098},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0154-1},
mrnumber = {3304799},
zbl = {06433715},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0154-1/}
}
TY - JOUR AU - Chernyavskaya, Nina A. AU - Shuster, Leonid A. TI - Methods of analysis of the condition for correct solvability in $L_p (\mathbb R)$ of general Sturm-Liouville equations JO - Czechoslovak Mathematical Journal PY - 2014 SP - 1067 EP - 1098 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0154-1/ DO - 10.1007/s10587-014-0154-1 LA - en ID - 10_1007_s10587_014_0154_1 ER -
%0 Journal Article %A Chernyavskaya, Nina A. %A Shuster, Leonid A. %T Methods of analysis of the condition for correct solvability in $L_p (\mathbb R)$ of general Sturm-Liouville equations %J Czechoslovak Mathematical Journal %D 2014 %P 1067-1098 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0154-1/ %R 10.1007/s10587-014-0154-1 %G en %F 10_1007_s10587_014_0154_1
Chernyavskaya, Nina A.; Shuster, Leonid A. Methods of analysis of the condition for correct solvability in $L_p (\mathbb R)$ of general Sturm-Liouville equations. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1067-1098. doi: 10.1007/s10587-014-0154-1
Cité par Sources :