Generalizing a theorem of Schur
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1063-1065.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In a letter written to Landau in 1935, Schur stated that for any integer $t>2$, there are primes $p_{1}$ such that $p_{1}+p_{2}>p_{t}$. In this note, we use the Prime Number Theorem and extend Schur's result to show that for any integers $t\ge k \ge 1$ and real $\epsilon >0$, there exist primes $p_{1}$ such that \[ p_{1}+p_{2}+\cdots +p_{k}>(k-\epsilon )p_{t}. \]
DOI : 10.1007/s10587-014-0153-2
Classification : 11A41, 11N05
Keywords: Prime Number Theorem; Schur
@article{10_1007_s10587_014_0153_2,
     author = {Jones, Lenny},
     title = {Generalizing a theorem of {Schur}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1063--1065},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2014},
     doi = {10.1007/s10587-014-0153-2},
     mrnumber = {3304798},
     zbl = {06433714},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0153-2/}
}
TY  - JOUR
AU  - Jones, Lenny
TI  - Generalizing a theorem of Schur
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 1063
EP  - 1065
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0153-2/
DO  - 10.1007/s10587-014-0153-2
LA  - en
ID  - 10_1007_s10587_014_0153_2
ER  - 
%0 Journal Article
%A Jones, Lenny
%T Generalizing a theorem of Schur
%J Czechoslovak Mathematical Journal
%D 2014
%P 1063-1065
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0153-2/
%R 10.1007/s10587-014-0153-2
%G en
%F 10_1007_s10587_014_0153_2
Jones, Lenny. Generalizing a theorem of Schur. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1063-1065. doi : 10.1007/s10587-014-0153-2. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0153-2/

Cité par Sources :