Semi-slant Riemannian maps into almost Hermitian manifolds
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1045-1061 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal maps, which are useful for proving various complex-analytic properties of stable harmonic maps from complex projective space and give many examples of such maps.
We introduce semi-slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Riemannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain characterizations, investigate the harmonicity of such maps and find necessary and sufficient conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the notion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal maps, which are useful for proving various complex-analytic properties of stable harmonic maps from complex projective space and give many examples of such maps.
DOI : 10.1007/s10587-014-0152-3
Classification : 53C15, 53C42, 53C43
Keywords: Riemannian map; semi-slant Riemannian map; harmonic map; totally geodesic map
@article{10_1007_s10587_014_0152_3,
     author = {Park, Kwang-Soon and \c{S}ahin, Bayram},
     title = {Semi-slant {Riemannian} maps into almost {Hermitian} manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1045--1061},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0152-3},
     mrnumber = {3304797},
     zbl = {06433713},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0152-3/}
}
TY  - JOUR
AU  - Park, Kwang-Soon
AU  - Şahin, Bayram
TI  - Semi-slant Riemannian maps into almost Hermitian manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 1045
EP  - 1061
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0152-3/
DO  - 10.1007/s10587-014-0152-3
LA  - en
ID  - 10_1007_s10587_014_0152_3
ER  - 
%0 Journal Article
%A Park, Kwang-Soon
%A Şahin, Bayram
%T Semi-slant Riemannian maps into almost Hermitian manifolds
%J Czechoslovak Mathematical Journal
%D 2014
%P 1045-1061
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0152-3/
%R 10.1007/s10587-014-0152-3
%G en
%F 10_1007_s10587_014_0152_3
Park, Kwang-Soon; Şahin, Bayram. Semi-slant Riemannian maps into almost Hermitian manifolds. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1045-1061. doi: 10.1007/s10587-014-0152-3

[1] Abraham, R., Marsden, J. E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications (2nd edition). Applied Mathematical Sciences 75 Springer, New York (1988). | DOI | MR

[2] Aprodu, M. A., Aprodu, M.: Implicitly defined harmonic PHH submersions. Manuscr. Math. 100 (1999), 103-121. | DOI | MR | Zbl

[3] Aprodu, M. A., Aprodu, M., Brînzănescu, V.: A class of harmonic submersions and minimal submanifolds. Int. J. Math. 11 (2000), 1177-1191. | DOI | MR | Zbl

[4] Baird, P., Wood, J. C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monographs. New Series 29 Clarendon Press, Oxford University Press, Oxford (2003). | MR | Zbl

[5] Bejancu, A.: Geometry of CR-Submanifolds. Mathematics and Its Applications (East European Series) 23 D. Reidel Publishing Co., Dordrecht (1986). | MR | Zbl

[6] Burns, D., Burstall, F., Bartolomeis, P. de, Rawnsley, J.: Stability of harmonic maps of Kähler manifolds. J. Differ. Geom. 30 (1989), 579-594. | DOI | MR | Zbl

[7] Candelas, P., Horowitz, G. T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nuclear Phys. B (electronic only) 258 (1985), 46-74. | MR

[8] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Dept. of Mathematics, Leuven (1990). | MR | Zbl

[9] Chen, B.-Y.: Slant immersions. Bull. Aust. Math. Soc. 41 (1990), 135-147. | DOI | MR | Zbl

[10] Chinea, D.: Almost contact metric submersions. Rend. Circ. Mat. Palermo (2) 34 (1985), 89-104. | DOI | MR | Zbl

[11] Eells, J. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109-160. | DOI | MR | Zbl

[12] Esposito, G.: From spinor geometry to complex general relativity. Int. J. Geom. Methods Mod. Phys. 2 (2005), 675-731. | DOI | MR | Zbl

[13] Falcitelli, M., Ianus, S., Pastore, A. M.: Riemannian Submersions and Related Topics. World Scientific, River Edge, New York (2004). | MR | Zbl

[14] Fischer, A. E.: Riemannian maps between Riemannian manifolds. Mathematical aspects of classical field theory. Proc. of the AMS-IMS-SIAM Joint Summer Research Conf., Seattle, Washington, USA, 1991 Contemp. Math. 132 American Mathematical Society, Providence (1992), 331-366 M. J. Gotay et al. | DOI | MR | Zbl

[15] García-Río, E., Kupeli, D. N.: Semi-Riemannian Maps and Their Applications. Mathematics and Its Applications 475 Kluwer Academic Publishers, Dordrecht (1999). | MR | Zbl

[16] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737. | MR | Zbl

[17] Ianuş, S., Mazzocco, R., Vîlcu, G. E.: Riemannian submersions from quaternionic manifolds. Acta Appl. Math. 104 (2008), 83-89. | DOI | MR | Zbl

[18] Lerner, D. E., eds., P. D. Sommers: Complex Manifold Techniques in Theoretical Physics. Research Notes in Mathematics 32 Pitman Advanced Publishing Program San Francisco (1979). | MR | Zbl

[19] Loubeau, E., Slobodeanu, R.: Eigenvalues of harmonic almost submersions. Geom. Dedicata 145 (2010), 103-126. | DOI | MR | Zbl

[20] Marrero, J. C., Rocha, J.: Locally conformal Kähler submersions. Geom. Dedicata 52 (1994), 271-289. | DOI | MR | Zbl

[21] O'Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 459-469. | DOI | MR | Zbl

[22] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 40 (1994), 55-61. | MR | Zbl

[23] Şahin, B.: Slant Riemannian maps to Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 10 (2013), Paper No. 1250080, 12 pages. | DOI | MR | Zbl

[24] Şahin, B.: Semi-invariant Riemannian maps to Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 8 (2011), 1439-1454. | DOI | MR | Zbl

[25] Şahin, B.: Invariant and anti-invariant Riemannian maps to Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 7 (2010), 337-355. | DOI | MR | Zbl

[26] Tromba, A. J.: Teichmüller Theory in Riemannian Geometry: Based on Lecture Notes by Jochen Denzler. Lectures in Mathematics ETH Zürich Birkhäuser, Basel (1992). | MR | Zbl

[27] Watson, B.: Almost Hermitian submersions. J. Differ. Geom. 11 (1976), 147-165. | DOI | MR | Zbl

Cité par Sources :