Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1019-1034 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel's theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel's theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.
The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel's theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel's theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.
DOI : 10.1007/s10587-014-0150-5
Classification : 17A42, 17A70, 17B45, 17B50
Keywords: nilpotent $n$-Lie superalgebra; Engel's theorem; $S^{\ast }$ algebra; Frattini subalgebra
@article{10_1007_s10587_014_0150_5,
     author = {Guan, Baoling and Chen, Liangyun and Ma, Yao},
     title = {Some necessary and sufficient conditions for nilpotent $n${-Lie} superalgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1034},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0150-5},
     mrnumber = {3304795},
     zbl = {06433711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0150-5/}
}
TY  - JOUR
AU  - Guan, Baoling
AU  - Chen, Liangyun
AU  - Ma, Yao
TI  - Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 1019
EP  - 1034
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0150-5/
DO  - 10.1007/s10587-014-0150-5
LA  - en
ID  - 10_1007_s10587_014_0150_5
ER  - 
%0 Journal Article
%A Guan, Baoling
%A Chen, Liangyun
%A Ma, Yao
%T Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras
%J Czechoslovak Mathematical Journal
%D 2014
%P 1019-1034
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0150-5/
%R 10.1007/s10587-014-0150-5
%G en
%F 10_1007_s10587_014_0150_5
Guan, Baoling; Chen, Liangyun; Ma, Yao. Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1019-1034. doi: 10.1007/s10587-014-0150-5

[1] Albeverio, S., Ayupov, S. A., Omirov, B. A., Turdibaev, R. M.: Cartan subalgebras of Leibniz $n$-algebras. Commun. Algebra 37 (2009), 2080-2096. | DOI | MR | Zbl

[2] Bai, R. P., Chen, L. Y., Meng, D. J.: The Frattini subalgebra of $n$-Lie algebras. Acta Math. Sin., Engl. Ser. 23 (2007), 847-856. | DOI | MR | Zbl

[3] Barnes, D. W.: Some theorems on Leibniz algebras. Commun. Algebra 39 (2011), 2463-2472. | DOI | MR | Zbl

[4] Barnes, D. W.: Engel subalgebras of $n$-Lie algebras. Acta Math. Sin., Engl. Ser. 24 (2008), 159-166. | DOI | MR | Zbl

[5] Camacho, L. M., Casas, J. M., Gómez, J. R., Ladra, M., Omirov, B. A.: On nilpotent Leibniz $n$-algebras. J. Algebra Appl. 11 (2012), Article ID 1250062, 17 pages. | DOI | MR | Zbl

[6] Cantarini, N., Kac, V. G.: Classification of simple linearly compact $n$-Lie superalgebras. Commun. Math. Phys. 298 (2010), 833-853. | DOI | MR | Zbl

[7] Casas, J. M., Khmaladze, E., Ladra, M.: On solvability and nilpotency of Leibniz $n$-algebras. Commun. Algebra 34 (2006), 2769-2780. | DOI | MR | Zbl

[8] Chao, C.-Y.: Some characterizations of nilpotent Lie algebras. Math. Z. 103 (1968), 40-42. | DOI | MR | Zbl

[9] Chao, C. Y., Stitzinger, E. L.: On nilpotent Lie algebras. Arch. Math. 27 (1976), 249-252. | DOI | MR | Zbl

[10] Chen, L., Meng, D.: On the intersection of maximal subalgebras in a Lie superalgebra. Algebra Colloq. 16 (2009), 503-516. | MR | Zbl

[11] Daletskiĭ, Y. L., Kushnirevich, V. A.: Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry. Dopov. Akad. Nauk Ukr. 1996 Russian (1996), 12-17. | MR

[12] Gago, F., Ladra, M., Omirov, B. A., Turdibaev, R. M.: Some radicals, Frattini and Cartan subalgebras of Leibniz {$n$}-algebras. Linear Multilinear Algebra 61 (2013), 1510-1527. | DOI | MR

[13] Kasymov, S. M.: On a theory of {$n$}-Lie algebras. Algebra i Logika 26 (1987), Russian 277-297 English translation in Algebra and Logic 26 155-166 (1987). | DOI | MR

[14] Ray, C. B., Combs, A., Gin, N., Hedges, A., Hird, J. T., Zack, L.: Nilpotent Lie and Leibniz algebras. Commun. Algebra 42 (2014), 2404-2410. | DOI | MR

[15] Williams, M. P.: Nilpotent {$n$}-Lie algebras. Commun. Algebra 37 (2009), 1843-1849. | DOI | MR | Zbl

Cité par Sources :