Keywords: nilpotent $n$-Lie superalgebra; Engel's theorem; $S^{\ast }$ algebra; Frattini subalgebra
@article{10_1007_s10587_014_0150_5,
author = {Guan, Baoling and Chen, Liangyun and Ma, Yao},
title = {Some necessary and sufficient conditions for nilpotent $n${-Lie} superalgebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1019--1034},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0150-5},
mrnumber = {3304795},
zbl = {06433711},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0150-5/}
}
TY - JOUR AU - Guan, Baoling AU - Chen, Liangyun AU - Ma, Yao TI - Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras JO - Czechoslovak Mathematical Journal PY - 2014 SP - 1019 EP - 1034 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0150-5/ DO - 10.1007/s10587-014-0150-5 LA - en ID - 10_1007_s10587_014_0150_5 ER -
%0 Journal Article %A Guan, Baoling %A Chen, Liangyun %A Ma, Yao %T Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras %J Czechoslovak Mathematical Journal %D 2014 %P 1019-1034 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0150-5/ %R 10.1007/s10587-014-0150-5 %G en %F 10_1007_s10587_014_0150_5
Guan, Baoling; Chen, Liangyun; Ma, Yao. Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1019-1034. doi: 10.1007/s10587-014-0150-5
[1] Albeverio, S., Ayupov, S. A., Omirov, B. A., Turdibaev, R. M.: Cartan subalgebras of Leibniz $n$-algebras. Commun. Algebra 37 (2009), 2080-2096. | DOI | MR | Zbl
[2] Bai, R. P., Chen, L. Y., Meng, D. J.: The Frattini subalgebra of $n$-Lie algebras. Acta Math. Sin., Engl. Ser. 23 (2007), 847-856. | DOI | MR | Zbl
[3] Barnes, D. W.: Some theorems on Leibniz algebras. Commun. Algebra 39 (2011), 2463-2472. | DOI | MR | Zbl
[4] Barnes, D. W.: Engel subalgebras of $n$-Lie algebras. Acta Math. Sin., Engl. Ser. 24 (2008), 159-166. | DOI | MR | Zbl
[5] Camacho, L. M., Casas, J. M., Gómez, J. R., Ladra, M., Omirov, B. A.: On nilpotent Leibniz $n$-algebras. J. Algebra Appl. 11 (2012), Article ID 1250062, 17 pages. | DOI | MR | Zbl
[6] Cantarini, N., Kac, V. G.: Classification of simple linearly compact $n$-Lie superalgebras. Commun. Math. Phys. 298 (2010), 833-853. | DOI | MR | Zbl
[7] Casas, J. M., Khmaladze, E., Ladra, M.: On solvability and nilpotency of Leibniz $n$-algebras. Commun. Algebra 34 (2006), 2769-2780. | DOI | MR | Zbl
[8] Chao, C.-Y.: Some characterizations of nilpotent Lie algebras. Math. Z. 103 (1968), 40-42. | DOI | MR | Zbl
[9] Chao, C. Y., Stitzinger, E. L.: On nilpotent Lie algebras. Arch. Math. 27 (1976), 249-252. | DOI | MR | Zbl
[10] Chen, L., Meng, D.: On the intersection of maximal subalgebras in a Lie superalgebra. Algebra Colloq. 16 (2009), 503-516. | MR | Zbl
[11] Daletskiĭ, Y. L., Kushnirevich, V. A.: Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry. Dopov. Akad. Nauk Ukr. 1996 Russian (1996), 12-17. | MR
[12] Gago, F., Ladra, M., Omirov, B. A., Turdibaev, R. M.: Some radicals, Frattini and Cartan subalgebras of Leibniz {$n$}-algebras. Linear Multilinear Algebra 61 (2013), 1510-1527. | DOI | MR
[13] Kasymov, S. M.: On a theory of {$n$}-Lie algebras. Algebra i Logika 26 (1987), Russian 277-297 English translation in Algebra and Logic 26 155-166 (1987). | DOI | MR
[14] Ray, C. B., Combs, A., Gin, N., Hedges, A., Hird, J. T., Zack, L.: Nilpotent Lie and Leibniz algebras. Commun. Algebra 42 (2014), 2404-2410. | DOI | MR
[15] Williams, M. P.: Nilpotent {$n$}-Lie algebras. Commun. Algebra 37 (2009), 1843-1849. | DOI | MR | Zbl
Cité par Sources :