Keywords: elliptic curve; rank; quadratic twist
@article{10_1007_s10587_014_0149_y,
author = {Lee, Jung-Jo},
title = {On the ranks of elliptic curves in families of quadratic twists over number fields},
journal = {Czechoslovak Mathematical Journal},
pages = {1003--1018},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0149-y},
mrnumber = {3304794},
zbl = {06433710},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0149-y/}
}
TY - JOUR AU - Lee, Jung-Jo TI - On the ranks of elliptic curves in families of quadratic twists over number fields JO - Czechoslovak Mathematical Journal PY - 2014 SP - 1003 EP - 1018 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0149-y/ DO - 10.1007/s10587-014-0149-y LA - en ID - 10_1007_s10587_014_0149_y ER -
%0 Journal Article %A Lee, Jung-Jo %T On the ranks of elliptic curves in families of quadratic twists over number fields %J Czechoslovak Mathematical Journal %D 2014 %P 1003-1018 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0149-y/ %R 10.1007/s10587-014-0149-y %G en %F 10_1007_s10587_014_0149_y
Lee, Jung-Jo. On the ranks of elliptic curves in families of quadratic twists over number fields. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 1003-1018. doi: 10.1007/s10587-014-0149-y
[1] Baker, M. H.: Lower bounds for the canonical height on elliptic curves over abelian extensions. Int. Math. Res. Not. 2003 (2003), 1571-1589. | DOI | MR | Zbl
[2] Brumer, A., Kramer, K.: The rank of elliptic curves. Duke Math. J. 44 (1977), 715-743. | DOI | MR | Zbl
[3] Gupta, R., Murty, M. R.: Primitive points on elliptic curves. Compos. Math. 58 (1986), 13-44. | MR | Zbl
[4] Honda, T.: Isogenies, rational points and section points of group varieties. Jap. J. Math. 30 (1960), 84-101. | DOI | MR | Zbl
[5] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84 Springer, New York (1982). | MR | Zbl
[6] Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983). | MR | Zbl
[7] Merel, L.: Bounds for the torsion of elliptic curves over number fields. Invent. Math. 124 French (1996), 437-449. | MR | Zbl
[8] Murty, M. R.: Problems in Analytic Number Theory (2nd edition). Graduate Texts in Mathematics 206, Readings in Mathematics Springer, New York (2008). | MR
[9] Ooe, T., Top, J.: On the Mordell-Weil rank of an abelian variety over a number field. J. Pure Appl. Algebra 58 (1989), 261-265. | MR | Zbl
[10] Rubin, K., Silverberg, A.: Ranks of elliptic curves. Bull. Am. Math. Soc., New Ser. 39 (2002), 455-474. | DOI | MR | Zbl
[11] Rubin, K., Silverberg, A.: Ranks of elliptic curves in families of quadratic twists. Exp. Math. 9 (2000), 583-590. | DOI | MR | Zbl
[12] Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Applications to Number Theory. Publications of the Mathematical Society of Japan 6 Mathematical Society of Japan, Tokyo (1961). | MR | Zbl
[13] Silverman, J. H.: The Arithmetic of Elliptic Curves (2nd edition). Graduate Texts in Mathematics 106 Springer, New York (2009). | DOI | MR
[14] Silverman, J. H.: A lower bound for the canonical height on elliptic curves over abelian extensions. J. Number Theory 104 (2004), 353-372. | DOI | MR | Zbl
[15] Silverman, J. H.: Representations of integers by binary forms and the rank of the Mordell-Weil group. Invent. Math. 74 (1983), 281-292. | DOI | MR | Zbl
Cité par Sources :