Keywords: $AF$-algebra; extension; purely infinite simple algebra
@article{10_1007_s10587_014_0148_z,
author = {Liu, Junping and Wei, Changguo},
title = {Unital extensions of $AF$-algebras by purely infinite simple algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {989--1001},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0148-z},
mrnumber = {3304793},
zbl = {06433709},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0148-z/}
}
TY - JOUR AU - Liu, Junping AU - Wei, Changguo TI - Unital extensions of $AF$-algebras by purely infinite simple algebras JO - Czechoslovak Mathematical Journal PY - 2014 SP - 989 EP - 1001 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0148-z/ DO - 10.1007/s10587-014-0148-z LA - en ID - 10_1007_s10587_014_0148_z ER -
%0 Journal Article %A Liu, Junping %A Wei, Changguo %T Unital extensions of $AF$-algebras by purely infinite simple algebras %J Czechoslovak Mathematical Journal %D 2014 %P 989-1001 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0148-z/ %R 10.1007/s10587-014-0148-z %G en %F 10_1007_s10587_014_0148_z
Liu, Junping; Wei, Changguo. Unital extensions of $AF$-algebras by purely infinite simple algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 989-1001. doi: 10.1007/s10587-014-0148-z
[1] Blackadar, B.: $K$-Theory for Operator Algebras. (2nd ed.). Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). | MR | Zbl
[2] Eilers, S., Restorff, G., Ruiz, E.: The ordered $K$-theory of a full extension. Can. J. Math. 66 596-625 (2014). | DOI | MR
[3] Eilers, S., Restorff, G., Ruiz, E.: Classification of extensions of classifiable $C^*$-algebras. Adv. Math. 222 (2009), 2153-2172. | DOI | MR | Zbl
[4] Elliott, G. A., Gong, G.: On the classification of $C^*$-algebras of real rank zero. II. Ann. Math. (2) 144 (1996), 497-610. | MR
[5] Elliott, G. A., Gong, G., Li, L.: On the classification of simple inductive limit $C^*$-algebras. II: The isomorphism theorem. Invent. Math. 168 (2007), 249-320. | DOI | MR | Zbl
[6] Elliott, G., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem. Pac. J. Math. 198 (2001), 385-409. | DOI | MR | Zbl
[7] Gong, G.: On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem. Doc. Math., J. DMV (electronic) 7 (2002), 255-461. | MR | Zbl
[8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence. Houston J. Math. (electronic) 32 (2006), 531-550. | MR | Zbl
[9] Lin, H.: Approximately diagonalizing matrices over $C(Y)$. Proc. Natl. Acad. Sci. USA 109 (2012), 2842-2847. | DOI | MR | Zbl
[10] Lin, H.: Asymptotic unitary equivalence and classification of simple amenable $C^*$-algebras. Invent. Math. 183 (2011), 385-450. | DOI | MR
[11] Lin, H.: Approximate homotopy of homomorphisms from $C(X)$ into a simple $C^*$-algebra. Mem. Am. Math. Soc. 205 (2010), 131 pages. | MR
[12] Lin, H.: Full extensions and approximate unitary equivalence. Pac. J. Math. 229 (2007), 389-428. | DOI | MR | Zbl
[13] Lin, H.: Classification of simple $C^*$-algebras of tracial topological rank zero. Duke Math. J. 125 (2004), 91-119. | DOI | MR | Zbl
[14] Lin, H.: Classification of simple $C^*$-algebras and higher dimensional noncommutative tori. Ann. Math. (2) 157 (2003), 521-544. | MR
[15] Maclane, S.: Homology. Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. | MR | Zbl
[16] Phillips, N. C.: A classification theorem for nuclear purely infinite simple $C^*$-algebras. Doc. Math., J. DMV (electronic) 5 (2000), 49-114. | MR | Zbl
[17] Rørdam, M.: Classification of extensions of certain $C^*$-algebras by their six term exact sequences in $K$-theory. Math. Ann. 308 (1997), 93-117. | DOI | MR
[18] Rørdam, M., Larsen, F., Laustsen, N.: An Introduction to $K$-Theory for $C^*$-Algebras. London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). | MR | Zbl
[19] Rørdam, M., Størmer, E.: Classification of Nuclear $C^*$-Algebras. Entropy in Operator Algebras. Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). | MR | Zbl
[20] Wei, C.: Classification of extensions of torus algebra. II. Sci. China, Math. 55 (2012), 179-186. | DOI | MR | Zbl
[21] Wei, C.: Classification of extensions of $A\mathbb T$-algebras. Int. J. Math. 22 (2011), 1187-1208. | DOI | MR
[22] Wei, C.: Universal coefficient theorems for the stable Ext-groups. J. Funct. Anal. 258 (2010), 650-664. | DOI | MR | Zbl
[23] Wei, C.: Classification of unital extensions and the BDF-theory. Submitted to Houst. J. Math.
[24] Wei, C., Wang, L.: Isomorphism of extensions of $C(\mathbb T^2)$. Sci. China, Math. 54 (2011), 281-286. | MR | Zbl
Cité par Sources :