Unital extensions of $AF$-algebras by purely infinite simple algebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 989-1001
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.
In this paper, we consider the classification of unital extensions of $AF$-algebras by their six-term exact sequences in $K$-theory. Using the classification theory of $C^*$-algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of $AF$-algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of $AF$-algebras by stable purely infinite simple $C^*$-algebras with nontrivial $K_1$-groups up to isomorphism.
DOI : 10.1007/s10587-014-0148-z
Classification : 46L05, 46L35
Keywords: $AF$-algebra; extension; purely infinite simple algebra
@article{10_1007_s10587_014_0148_z,
     author = {Liu, Junping and Wei, Changguo},
     title = {Unital extensions of $AF$-algebras by purely infinite simple algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {989--1001},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0148-z},
     mrnumber = {3304793},
     zbl = {06433709},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0148-z/}
}
TY  - JOUR
AU  - Liu, Junping
AU  - Wei, Changguo
TI  - Unital extensions of $AF$-algebras by purely infinite simple algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 989
EP  - 1001
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0148-z/
DO  - 10.1007/s10587-014-0148-z
LA  - en
ID  - 10_1007_s10587_014_0148_z
ER  - 
%0 Journal Article
%A Liu, Junping
%A Wei, Changguo
%T Unital extensions of $AF$-algebras by purely infinite simple algebras
%J Czechoslovak Mathematical Journal
%D 2014
%P 989-1001
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0148-z/
%R 10.1007/s10587-014-0148-z
%G en
%F 10_1007_s10587_014_0148_z
Liu, Junping; Wei, Changguo. Unital extensions of $AF$-algebras by purely infinite simple algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 989-1001. doi: 10.1007/s10587-014-0148-z

[1] Blackadar, B.: $K$-Theory for Operator Algebras. (2nd ed.). Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). | MR | Zbl

[2] Eilers, S., Restorff, G., Ruiz, E.: The ordered $K$-theory of a full extension. Can. J. Math. 66 596-625 (2014). | DOI | MR

[3] Eilers, S., Restorff, G., Ruiz, E.: Classification of extensions of classifiable $C^*$-algebras. Adv. Math. 222 (2009), 2153-2172. | DOI | MR | Zbl

[4] Elliott, G. A., Gong, G.: On the classification of $C^*$-algebras of real rank zero. II. Ann. Math. (2) 144 (1996), 497-610. | MR

[5] Elliott, G. A., Gong, G., Li, L.: On the classification of simple inductive limit $C^*$-algebras. II: The isomorphism theorem. Invent. Math. 168 (2007), 249-320. | DOI | MR | Zbl

[6] Elliott, G., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem. Pac. J. Math. 198 (2001), 385-409. | DOI | MR | Zbl

[7] Gong, G.: On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem. Doc. Math., J. DMV (electronic) 7 (2002), 255-461. | MR | Zbl

[8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence. Houston J. Math. (electronic) 32 (2006), 531-550. | MR | Zbl

[9] Lin, H.: Approximately diagonalizing matrices over $C(Y)$. Proc. Natl. Acad. Sci. USA 109 (2012), 2842-2847. | DOI | MR | Zbl

[10] Lin, H.: Asymptotic unitary equivalence and classification of simple amenable $C^*$-algebras. Invent. Math. 183 (2011), 385-450. | DOI | MR

[11] Lin, H.: Approximate homotopy of homomorphisms from $C(X)$ into a simple $C^*$-algebra. Mem. Am. Math. Soc. 205 (2010), 131 pages. | MR

[12] Lin, H.: Full extensions and approximate unitary equivalence. Pac. J. Math. 229 (2007), 389-428. | DOI | MR | Zbl

[13] Lin, H.: Classification of simple $C^*$-algebras of tracial topological rank zero. Duke Math. J. 125 (2004), 91-119. | DOI | MR | Zbl

[14] Lin, H.: Classification of simple $C^*$-algebras and higher dimensional noncommutative tori. Ann. Math. (2) 157 (2003), 521-544. | MR

[15] Maclane, S.: Homology. Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. | MR | Zbl

[16] Phillips, N. C.: A classification theorem for nuclear purely infinite simple $C^*$-algebras. Doc. Math., J. DMV (electronic) 5 (2000), 49-114. | MR | Zbl

[17] Rørdam, M.: Classification of extensions of certain $C^*$-algebras by their six term exact sequences in $K$-theory. Math. Ann. 308 (1997), 93-117. | DOI | MR

[18] Rørdam, M., Larsen, F., Laustsen, N.: An Introduction to $K$-Theory for $C^*$-Algebras. London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). | MR | Zbl

[19] Rørdam, M., Størmer, E.: Classification of Nuclear $C^*$-Algebras. Entropy in Operator Algebras. Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). | MR | Zbl

[20] Wei, C.: Classification of extensions of torus algebra. II. Sci. China, Math. 55 (2012), 179-186. | DOI | MR | Zbl

[21] Wei, C.: Classification of extensions of $A\mathbb T$-algebras. Int. J. Math. 22 (2011), 1187-1208. | DOI | MR

[22] Wei, C.: Universal coefficient theorems for the stable Ext-groups. J. Funct. Anal. 258 (2010), 650-664. | DOI | MR | Zbl

[23] Wei, C.: Classification of unital extensions and the BDF-theory. Submitted to Houst. J. Math.

[24] Wei, C., Wang, L.: Isomorphism of extensions of $C(\mathbb T^2)$. Sci. China, Math. 54 (2011), 281-286. | MR | Zbl

Cité par Sources :