Keywords: Morrey-Herz space; variable exponent; sublinear operator; commutator
@article{10_1007_s10587_014_0147_0,
author = {Lu, Yan and Zhu, Yue Ping},
title = {Boundedness of some sublinear operators and commutators on {Morrey-Herz} spaces with variable exponents},
journal = {Czechoslovak Mathematical Journal},
pages = {969--987},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0147-0},
mrnumber = {3304792},
zbl = {06433708},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0147-0/}
}
TY - JOUR AU - Lu, Yan AU - Zhu, Yue Ping TI - Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents JO - Czechoslovak Mathematical Journal PY - 2014 SP - 969 EP - 987 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0147-0/ DO - 10.1007/s10587-014-0147-0 LA - en ID - 10_1007_s10587_014_0147_0 ER -
%0 Journal Article %A Lu, Yan %A Zhu, Yue Ping %T Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents %J Czechoslovak Mathematical Journal %D 2014 %P 969-987 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0147-0/ %R 10.1007/s10587-014-0147-0 %G en %F 10_1007_s10587_014_0147_0
Lu, Yan; Zhu, Yue Ping. Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 969-987. doi: 10.1007/s10587-014-0147-0
[1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394 (2012), 781-795. | DOI | MR | Zbl
[2] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. | MR | Zbl
[3] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl
[4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR
[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl
[6] Herz, C.: Lipschitz spaces and Berstein's theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18 (1968), 283-323. | MR
[7] Ho, K.-P.: The fractional integral operators on Morrey spaces with variable exponent on unbounded domains. Math. Inequal. Appl. 16 (2013), 363-373. | MR | Zbl
[8] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Ciec. Mat. Palermo (2) 59 (2010), 199-213. | DOI | MR | Zbl
[9] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. | DOI | MR | Zbl
[10] Izuki, M.: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 40 (2010), 343-355. | DOI | MR | Zbl
[11] Izuki, M.: Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 13 (2009), 243-253. | MR | Zbl
[12] Izuki, M., Sawano, Y.: Variable Lebesgue norm estimates for BMO functions. Czech. Math. J. 62 (2012), 717-727. | DOI | MR | Zbl
[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR
[14] Lerner, A. K.: On some questions related to the maximal operator on variable $L^p$ spaces. Trans. Am. Math. Soc. 362 (2010), 4229-4242. | DOI | MR
[15] Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 34 (2005), 299-314. | DOI | MR | Zbl
[16] Lu, S. Z., Yang, D. C., Hu, G.: Herz Type Spaces and Their Applications. Science Press, Beijing (2008).
Cité par Sources :