Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 969-987 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a new type of variable exponent function spaces $M\dot K^{\alpha (\cdot ),\lambda }_{q,p(\cdot )}(\mathbb R^n)$ of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents $\alpha $ and $p$ are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO function on these Morrey-Herz type spaces by applying the properties of variable exponent and BMO norms.
We introduce a new type of variable exponent function spaces $M\dot K^{\alpha (\cdot ),\lambda }_{q,p(\cdot )}(\mathbb R^n)$ of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents $\alpha $ and $p$ are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO function on these Morrey-Herz type spaces by applying the properties of variable exponent and BMO norms.
DOI : 10.1007/s10587-014-0147-0
Classification : 42B25, 42B35
Keywords: Morrey-Herz space; variable exponent; sublinear operator; commutator
@article{10_1007_s10587_014_0147_0,
     author = {Lu, Yan and Zhu, Yue Ping},
     title = {Boundedness of some sublinear operators and commutators on {Morrey-Herz} spaces with variable exponents},
     journal = {Czechoslovak Mathematical Journal},
     pages = {969--987},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0147-0},
     mrnumber = {3304792},
     zbl = {06433708},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0147-0/}
}
TY  - JOUR
AU  - Lu, Yan
AU  - Zhu, Yue Ping
TI  - Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 969
EP  - 987
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0147-0/
DO  - 10.1007/s10587-014-0147-0
LA  - en
ID  - 10_1007_s10587_014_0147_0
ER  - 
%0 Journal Article
%A Lu, Yan
%A Zhu, Yue Ping
%T Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
%J Czechoslovak Mathematical Journal
%D 2014
%P 969-987
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0147-0/
%R 10.1007/s10587-014-0147-0
%G en
%F 10_1007_s10587_014_0147_0
Lu, Yan; Zhu, Yue Ping. Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 969-987. doi: 10.1007/s10587-014-0147-0

[1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394 (2012), 781-795. | DOI | MR | Zbl

[2] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. | MR | Zbl

[3] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl

[4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR

[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl

[6] Herz, C.: Lipschitz spaces and Berstein's theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18 (1968), 283-323. | MR

[7] Ho, K.-P.: The fractional integral operators on Morrey spaces with variable exponent on unbounded domains. Math. Inequal. Appl. 16 (2013), 363-373. | MR | Zbl

[8] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Ciec. Mat. Palermo (2) 59 (2010), 199-213. | DOI | MR | Zbl

[9] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. | DOI | MR | Zbl

[10] Izuki, M.: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 40 (2010), 343-355. | DOI | MR | Zbl

[11] Izuki, M.: Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 13 (2009), 243-253. | MR | Zbl

[12] Izuki, M., Sawano, Y.: Variable Lebesgue norm estimates for BMO functions. Czech. Math. J. 62 (2012), 717-727. | DOI | MR | Zbl

[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[14] Lerner, A. K.: On some questions related to the maximal operator on variable $L^p$ spaces. Trans. Am. Math. Soc. 362 (2010), 4229-4242. | DOI | MR

[15] Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 34 (2005), 299-314. | DOI | MR | Zbl

[16] Lu, S. Z., Yang, D. C., Hu, G.: Herz Type Spaces and Their Applications. Science Press, Beijing (2008).

Cité par Sources :