Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 945-960 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined.
We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined.
DOI : 10.1007/s10587-014-0145-2
Classification : 53A55, 53B25, 53C25, 53D15
Keywords: Bianchi-Cartan-Vranceanu metric; slant curve; Legendre curve; Lancret invariant; helix
@article{10_1007_s10587_014_0145_2,
     author = {C\u{a}lin, Constantin and Crasmareanu, Mircea},
     title = {Slant and {Legendre} curves in {Bianchi-Cartan-Vranceanu} geometry},
     journal = {Czechoslovak Mathematical Journal},
     pages = {945--960},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0145-2},
     mrnumber = {3304790},
     zbl = {06433706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0145-2/}
}
TY  - JOUR
AU  - Călin, Constantin
AU  - Crasmareanu, Mircea
TI  - Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 945
EP  - 960
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0145-2/
DO  - 10.1007/s10587-014-0145-2
LA  - en
ID  - 10_1007_s10587_014_0145_2
ER  - 
%0 Journal Article
%A Călin, Constantin
%A Crasmareanu, Mircea
%T Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry
%J Czechoslovak Mathematical Journal
%D 2014
%P 945-960
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0145-2/
%R 10.1007/s10587-014-0145-2
%G en
%F 10_1007_s10587_014_0145_2
Călin, Constantin; Crasmareanu, Mircea. Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 945-960. doi: 10.1007/s10587-014-0145-2

[1] Barros, M.: General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125 1503-1509 (1997). | DOI | MR | Zbl

[2] Belkhelfa, M., Dillen, F., Inoguchi, J.-I.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. {PDEs, Submanifolds and Affine Differential Geometry. Contributions of a Conference, Warsaw, Poland} B. Opozda et al. Banach Center Publ. 57 Polish Academy of Sciences, Institute of Mathematics, Warsaw 67-87 (2002). | MR | Zbl

[3] Belkhelfa, M., Hirică, I. E., Rosca, R., Verstraelen, L.: On Legendre curves in Riemannian and Lorentzian Sasaki spaces. Soochow J. Math. 28 81-91 (2002). | MR | Zbl

[4] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203 Birkhäuser, Boston (2010). | MR | Zbl

[5] Blair, D. E., Dillen, F., Verstraelen, L., Vrancken, L.: Deformations of Legendre curves. Note Mat. 15 99-110 (1995). | MR | Zbl

[6] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. {Modern Trends in Geometry and Topology. Proceedings of the 7th International Workshop on Differential Geometry and Its Applications, Deva, Romania, 2005} D. Andrica et al. Cluj University Press, Cluj-Napoca 121-131 (2006). | MR | Zbl

[7] Camci, Ç., Yayli, Y., Hacisalihoglu, H. H.: On the characterization of spherical curves in 3-dimensional Sasakian spaces. J. Math. Anal. Appl. 342 1151-1159 (2008). | DOI | MR | Zbl

[8] Călin, C., Crasmareanu, M.: Slant curves in 3-dimensional normal almost contact geometry. Mediterr. J. Math. 10 1067-1077 (2013). | DOI | MR | Zbl

[9] Călin, C., Crasmareanu, M.: Slant curves and particles in 3-dimensional warped products and their Lancret invariants. Bull. Aust. Math. Soc. 88 128-142 (2013). | DOI | MR

[10] Călin, C., Crasmareanu, M., Munteanu, M. I.: Slant curves in three-dimensional $f$-Kenmotsu manifolds. J. Math. Anal. Appl. 394 400-407 (2012). | DOI | MR | Zbl

[11] Cariñena, J. F., Lucas, J. de: Quantum Lie systems and integrability conditions. Int. J. Geom. Methods Mod. Phys. 6 1235-1252 (2009). | DOI | MR | Zbl

[12] Cho, J. T., Inoguchi, J.-I., Lee, J.-E.: On slant curves in Sasakian 3-manifolds. Bull. Aust. Math. Soc. 74 359-367 (2006). | DOI | MR | Zbl

[13] Cho, J. T., Inoguchi, J.-I., Lee, J.-E.: Biharmonic curves in 3-dimensional Sasakian space forms. Ann. Mat. Pura Appl. (4) 186 685-701 (2007). | DOI | MR | Zbl

[14] Cho, J. T., Lee, J.-E.: Slant curves in contact pseudo-Hermitian 3-manifolds. Bull. Aust. Math. Soc. 78 383-396 (2008). | DOI | MR | Zbl

[15] Fastenakels, J., Munteanu, M. I., Veken, J. Van Der: Constant angle surfaces in the Heisenberg group. Acta Math. Sin., Engl. Ser. 27 747-756 (2011). | DOI | MR

[16] Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45 393-404 (2008). | DOI | MR | Zbl

[17] Inoguchi, J.-I.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds. Colloq. Math. 100 163-179 (2004). | DOI | MR | Zbl

[18] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. 28 153-163 (2004). | MR | Zbl

[19] Lee, H.: Extensions of the duality between minimal surfaces and maximal surfaces. Geom. Dedicata 151 373-386 (2011). | DOI | MR | Zbl

[20] Lee, J.-E.: On Legendre curves in contact pseudo-Hermitian 3-manifolds. Bull. Aust. Math. Soc. 81 156-164 (2010). | DOI | MR | Zbl

[21] Ou, Y.-L., Wang, Z.-P.: Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries. J. Geom. Phys. 61 1845-1853 (2011). | DOI | MR | Zbl

[22] Piu, P., Profir, M. M.: On the three-dimensional homogeneous $SO(2)$-isotropic Riemannian manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 57 361-376 (2011). | MR | Zbl

[23] Veken, J. Van Der: Higher order parallel surfaces in Bianchi-Cartan-Vranceanu spaces. Result. Math. 51 339-359 (2008). | DOI | MR

[24] Wełyczko, J.: On Legrende curves in 3-dimensional normal almost contact metric manifolds. Soochow J. Math. 33 929-937 (2007). | MR | Zbl

[25] Wełyczko, J.: On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result. Math. 54 377-387 (2009). | DOI | MR | Zbl

Cité par Sources :