Pretty cleanness and filter-regular sequences
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 933-944 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley's conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean.
Let $K$ be a field and $S=K[x_1,\ldots , x_n]$. Let $I$ be a monomial ideal of $S$ and $u_1,\ldots , u_r$ be monomials in $S$. We prove that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then $S/I$ is pretty clean if and only if $S/(I,u_1,\ldots , u_r)$ is pretty clean. Also, we show that if $u_1,\ldots , u_r$ form a filter-regular sequence on $S/I$, then Stanley's conjecture is true for $S/I$ if and only if it is true for $S/(I,u_1, \ldots , u_r)$. Finally, we prove that if $u_1,\ldots , u_r$ is a minimal set of generators for $I$ which form either a $d$-sequence, proper sequence or strong $s$-sequence (with respect to the reverse lexicographic order), then $S/I$ is pretty clean.
DOI : 10.1007/s10587-014-0144-3
Classification : 05E40, 13F20
Keywords: almost clean module; clean module; $d$-sequence; filter-regular sequence; pretty clean module
@article{10_1007_s10587_014_0144_3,
     author = {Bandari, Somayeh and Divaani-Aazar, Kamran and Jahan, Ali Soleyman},
     title = {Pretty cleanness and filter-regular sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {933--944},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0144-3},
     mrnumber = {3304789},
     zbl = {06433705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0144-3/}
}
TY  - JOUR
AU  - Bandari, Somayeh
AU  - Divaani-Aazar, Kamran
AU  - Jahan, Ali Soleyman
TI  - Pretty cleanness and filter-regular sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 933
EP  - 944
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0144-3/
DO  - 10.1007/s10587-014-0144-3
LA  - en
ID  - 10_1007_s10587_014_0144_3
ER  - 
%0 Journal Article
%A Bandari, Somayeh
%A Divaani-Aazar, Kamran
%A Jahan, Ali Soleyman
%T Pretty cleanness and filter-regular sequences
%J Czechoslovak Mathematical Journal
%D 2014
%P 933-944
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0144-3/
%R 10.1007/s10587-014-0144-3
%G en
%F 10_1007_s10587_014_0144_3
Bandari, Somayeh; Divaani-Aazar, Kamran; Jahan, Ali Soleyman. Pretty cleanness and filter-regular sequences. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 933-944. doi: 10.1007/s10587-014-0144-3

[1] Apel, J.: On a conjecture of R. P. Stanley. I. Monomial ideals. J. Algebr. Comb. 17 (2003), 39-56. | DOI | MR | Zbl

[2] Apel, J.: On a conjecture of R. P. Stanley. II. Quotients modulo monomial ideals. J. Algebr. Comb. 17 (2003), 57-74. | DOI | MR | Zbl

[3] Lorestani, K. Borna, Sahandi, P., Sharif, T.: A note on the associated primes of local cohomology modules. Commun. Algebra 34 (2006), 3409-3412. | DOI | MR

[4] Dress, A.: A new algebraic criterion for shellability. Beitr. Algebra Geom. 34 (1993), 45-55. | MR | Zbl

[5] Herzog, J., Jahan, A. S., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes. J. Algebr. Comb. 27 (2008), 113-125. | DOI | MR | Zbl

[6] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260 Springer, London (2011). | MR | Zbl

[7] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes. Manuscr. Math. 121 (2006), 385-410. | DOI | MR | Zbl

[8] Herzog, J., Restuccia, G., Tang, Z.: $s$-sequences and symmetric algebras. Manuscr. Math. 104 (2001), 479-501. | DOI | MR | Zbl

[9] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322 (2009), 3151-3169. | DOI | MR | Zbl

[10] Popescu, D.: Stanley depth of multigraded modules. J. Algebra 321 (2009), 2782-2797. | DOI | MR | Zbl

[11] Rauf, A.: Stanley decompositions, pretty clean filtrations and reductions modulo regular elements. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50 (2007), 347-354. | MR | Zbl

[12] Sabzrou, H., Tousi, M., Yassemi, S.: Simplicial join via tensor product. Manuscr. Math. 126 (2008), 255-272. | DOI | MR | Zbl

[13] Jahan, A. Soleyman: Easy proofs of some well known facts via cleanness. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 237-243. | MR

[14] Jahan, A. Soleyman: Prime filtrations and primary decompositions of modules. Commun. Algebra 39 (2011), 116-124. | DOI | MR

[15] Jahan, A. Soleyman: Prime filtrations and Stanley decompositions of squarefree modules and Alexander duality. Manuscr. Math. 130 (2009), 533-550. | DOI | MR

[16] Jahan, A. Soleyman: Prime filtrations of monomial ideals and polarizations. J. Algebra 312 (2007), 1011-1032. | DOI | MR

[17] Jahan, A. Soleyman, Zheng, X.: Monomial ideals of forest type. Commun. Algebra 40 (2012), 2786-2797. | DOI | MR | Zbl

[18] Stanley, R. P.: Linear Diophantine equations and local cohomology. Invent. Math. 68 (1982), 175-193. | DOI | MR | Zbl

[19] Tang, Z.: On certain monomial sequences. J. Algebra 282 (2004), 831-842. | DOI | MR | Zbl

Cité par Sources :