Keywords: uniform distribution modulo $1$; equidistribution in probability; algebraic number fields; $S$-adele ring; $S$-integer dynamical system; algebraic dynamics; topological dynamics; $a$-adic solenoid
@article{10_1007_s10587_014_0143_4,
author = {Urban, Roman},
title = {Equidistribution in the dual group of the $S$-adic integers},
journal = {Czechoslovak Mathematical Journal},
pages = {911--931},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0143-4},
mrnumber = {3304788},
zbl = {06433704},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0143-4/}
}
TY - JOUR AU - Urban, Roman TI - Equidistribution in the dual group of the $S$-adic integers JO - Czechoslovak Mathematical Journal PY - 2014 SP - 911 EP - 931 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0143-4/ DO - 10.1007/s10587-014-0143-4 LA - en ID - 10_1007_s10587_014_0143_4 ER -
Urban, Roman. Equidistribution in the dual group of the $S$-adic integers. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 911-931. doi: 10.1007/s10587-014-0143-4
[1] Berend, D.: Multi-invariant sets on compact abelian groups. Trans. Am. Math. Soc. 286 (1984), 505-535. | DOI | MR | Zbl
[2] Bertin, M.-J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J.-P.: Pisot and Salem Numbers. With a preface by David W. Boyd Birkhäuser Basel (1992). | MR | Zbl
[3] Chothi, V., Everest, G., Ward, T.: {$S$}-integer dynamical systems: periodic points. J. Reine Angew. Math. 489 (1997), 99-132. | MR | Zbl
[4] Drmota, M., Tichy, R. F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651 Springer, Berlin (1997). | DOI | MR | Zbl
[5] Gouvêa, F. Q.: $p$-adic Numbers: An Introduction. Universitext Springer, Berlin (1997). | MR | Zbl
[6] Halmos, P. R.: On automorphisms of compact groups. Bull. Am. Math. Soc. 49 (1943), 619-624. | DOI | MR | Zbl
[7] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I: Structure of topological groups, integration theory, group representations. Fundamental Principles of Mathematical Sciences 115 Springer, Berlin (1979). | MR
[8] Host, B.: Some results of uniform distribution in the multidimensional torus. Ergodic Theory Dyn. Syst. 20 (2000), 439-452. | MR | Zbl
[9] Host, B.: Normal numbers, entropy, translations. Isr. J. Math. 91 French (1995), 419-428. | DOI | MR | Zbl
[10] Koblitz, N.: $p$-adic Numbers, $p$-adic Analysis, and Zeta-Functions. Graduate Texts in Mathematics 58 Springer, New York (1977). | DOI | MR | Zbl
[11] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. John Wiley & Sons New York (1974). | MR
[12] Mahler, K.: $p$-adic Numbers and Their Functions. Cambridge Tracts in Mathematics 76 Cambridge University Press, Cambridge (1981). | MR | Zbl
[13] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics Springer, Berlin (2004). | MR | Zbl
[14] Neukirch, J.: Algebraic Number Theory. Fundamental Principles of Mathematical Sciences 322 Springer, Berlin (1999). | MR | Zbl
[15] Ramakrishnan, D., Valenza, R. J.: Fourier Analysis on Number Fields. Graduate Texts in Mathematics 186 Springer, New York (1999). | DOI | MR | Zbl
[16] Robert, A. M.: A Course in $p$-adic Analysis. Graduate Texts in Mathematics 198 Springer, New York (2000). | DOI | MR | Zbl
[17] Schmidt, K.: Dynamical Systems of Algebraic Origin. Progress in Mathematics 128 Birkhäuser, Basel (1995). | MR | Zbl
[18] Urban, R.: Equidistribution in the {$d$}-dimensional {$a$}-adic solenoids. Unif. Distrib. Theory 6 (2011), 21-31. | MR
[19] Weil, A.: Basic Number Theory. Die Grundlehren der Mathematischen Wissenschaften 144 Springer, New York (1974). | MR | Zbl
Cité par Sources :