Keywords: Hopf $\pi $-algebra; $H$-$\pi $-modules; braided monoidal category; braided monoidal functor
@article{10_1007_s10587_014_0142_5,
author = {Zhao, Shiyin and Wang, Jing and Chen, Hui-Xiang},
title = {Quasitriangular {Hopf} group algebras and braided monoidal categories},
journal = {Czechoslovak Mathematical Journal},
pages = {893--909},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0142-5},
mrnumber = {3304787},
zbl = {06433703},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0142-5/}
}
TY - JOUR AU - Zhao, Shiyin AU - Wang, Jing AU - Chen, Hui-Xiang TI - Quasitriangular Hopf group algebras and braided monoidal categories JO - Czechoslovak Mathematical Journal PY - 2014 SP - 893 EP - 909 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0142-5/ DO - 10.1007/s10587-014-0142-5 LA - en ID - 10_1007_s10587_014_0142_5 ER -
%0 Journal Article %A Zhao, Shiyin %A Wang, Jing %A Chen, Hui-Xiang %T Quasitriangular Hopf group algebras and braided monoidal categories %J Czechoslovak Mathematical Journal %D 2014 %P 893-909 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0142-5/ %R 10.1007/s10587-014-0142-5 %G en %F 10_1007_s10587_014_0142_5
Zhao, Shiyin; Wang, Jing; Chen, Hui-Xiang. Quasitriangular Hopf group algebras and braided monoidal categories. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 893-909. doi: 10.1007/s10587-014-0142-5
[1] Chen, H.: Cocycle deformations, braided monoidal categories and quasitriangularity. Chin. Sci. Bull. 44 (1999), 510-513. | DOI | MR | Zbl
[2] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. | DOI | MR
[3] Cibils, C.: A quiver quantum group. Commun. Math. Phys. 157 (1993), 459-477. | DOI | MR | Zbl
[4] Drinfel'd, V. G.: Quantum Groups. Proc. Int. Congr. Math. 1; Berkeley/Calif., 1986, Providence 798-820 (1987), (A. M. Gleason, ed.). | MR | Zbl
[5] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155 Springer, New York (1995). | MR | Zbl
[6] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Proc. Conf. on Hopf algebras and their actions on rings, Chicago, USA, 1992 CBMS Regional Conference Series in Mathematics 82 AMS, Providence (1993). | MR | Zbl
[7] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series W. A. Benjamin, New York (1969). | MR | Zbl
[8] Turaev, V.: Crossed group-categories. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. | MR | Zbl
[9] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories. ArXiv: math/0005291v1 [math.GT] (2000).
[10] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171 (2002), 75-122. | DOI | MR | Zbl
[11] Wang, S.-H.: Coquasitriangular Hopf group algebras and Drinfel'd co-doubles. Commun. Algebra 35 (2007), 77-101. | DOI | MR | Zbl
[12] Yetter, D. N.: Quantum groups and representations of monoidal categories. Math. Proc. Camb. Philos. Soc. 108 (1990), 261-290. | DOI | MR | Zbl
[13] Zhu, M., Chen, H., Li, L.: Coquasitriangular Hopf group coalgebras and braided monoidal categories. Front. Math. China 6 (2011), 1009-1020. | DOI | MR | Zbl
[14] Zhu, M., Chen, H., Li, L.: Quasitriangular Hopf group coalgebras and braided monoidal categories. Arab. J. Sci. Eng. 36 (2011), 1063-1070. | DOI | MR
Cité par Sources :