Quasitriangular Hopf group algebras and braided monoidal categories
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 893-909
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H{\mathcal M}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_{\alpha }$ from $_H{\mathcal M}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal M$ is a braided monoidal category and $F_{\alpha }$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them.
Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H{\mathcal M}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_{\alpha }$ from $_H{\mathcal M}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal M$ is a braided monoidal category and $F_{\alpha }$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them.
DOI : 10.1007/s10587-014-0142-5
Classification : 08C05, 16T05, 16T25, 18D10
Keywords: Hopf $\pi $-algebra; $H$-$\pi $-modules; braided monoidal category; braided monoidal functor
@article{10_1007_s10587_014_0142_5,
     author = {Zhao, Shiyin and Wang, Jing and Chen, Hui-Xiang},
     title = {Quasitriangular {Hopf} group algebras and braided monoidal categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {893--909},
     year = {2014},
     volume = {64},
     number = {4},
     doi = {10.1007/s10587-014-0142-5},
     mrnumber = {3304787},
     zbl = {06433703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0142-5/}
}
TY  - JOUR
AU  - Zhao, Shiyin
AU  - Wang, Jing
AU  - Chen, Hui-Xiang
TI  - Quasitriangular Hopf group algebras and braided monoidal categories
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 893
EP  - 909
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0142-5/
DO  - 10.1007/s10587-014-0142-5
LA  - en
ID  - 10_1007_s10587_014_0142_5
ER  - 
%0 Journal Article
%A Zhao, Shiyin
%A Wang, Jing
%A Chen, Hui-Xiang
%T Quasitriangular Hopf group algebras and braided monoidal categories
%J Czechoslovak Mathematical Journal
%D 2014
%P 893-909
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0142-5/
%R 10.1007/s10587-014-0142-5
%G en
%F 10_1007_s10587_014_0142_5
Zhao, Shiyin; Wang, Jing; Chen, Hui-Xiang. Quasitriangular Hopf group algebras and braided monoidal categories. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 893-909. doi: 10.1007/s10587-014-0142-5

[1] Chen, H.: Cocycle deformations, braided monoidal categories and quasitriangularity. Chin. Sci. Bull. 44 (1999), 510-513. | DOI | MR | Zbl

[2] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. | DOI | MR

[3] Cibils, C.: A quiver quantum group. Commun. Math. Phys. 157 (1993), 459-477. | DOI | MR | Zbl

[4] Drinfel'd, V. G.: Quantum Groups. Proc. Int. Congr. Math. 1; Berkeley/Calif., 1986, Providence 798-820 (1987), (A. M. Gleason, ed.). | MR | Zbl

[5] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155 Springer, New York (1995). | MR | Zbl

[6] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Proc. Conf. on Hopf algebras and their actions on rings, Chicago, USA, 1992 CBMS Regional Conference Series in Mathematics 82 AMS, Providence (1993). | MR | Zbl

[7] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series W. A. Benjamin, New York (1969). | MR | Zbl

[8] Turaev, V.: Crossed group-categories. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. | MR | Zbl

[9] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories. ArXiv: math/0005291v1 [math.GT] (2000).

[10] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171 (2002), 75-122. | DOI | MR | Zbl

[11] Wang, S.-H.: Coquasitriangular Hopf group algebras and Drinfel'd co-doubles. Commun. Algebra 35 (2007), 77-101. | DOI | MR | Zbl

[12] Yetter, D. N.: Quantum groups and representations of monoidal categories. Math. Proc. Camb. Philos. Soc. 108 (1990), 261-290. | DOI | MR | Zbl

[13] Zhu, M., Chen, H., Li, L.: Coquasitriangular Hopf group coalgebras and braided monoidal categories. Front. Math. China 6 (2011), 1009-1020. | DOI | MR | Zbl

[14] Zhu, M., Chen, H., Li, L.: Quasitriangular Hopf group coalgebras and braided monoidal categories. Arab. J. Sci. Eng. 36 (2011), 1063-1070. | DOI | MR

Cité par Sources :