On block triangular matrices with signed Drazin inverse
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 883-892
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The sign pattern of a real matrix $A$, denoted by $\mathop {\rm sgn} A$, is the $(+,-,0)$-matrix obtained from $A$ by replacing each entry by its sign. Let $\mathcal {Q}(A)$ denote the set of all real matrices $B$ such that $\mathop {\rm sgn} B=\mathop {\rm sgn} A$. For a square real matrix $A$, the Drazin inverse of $A$ is the unique real matrix $X$ such that $A^{k+1}X=A^k$, $XAX=X$ and $AX=XA$, where $k$ is the Drazin index of $A$. We say that $A$ has signed Drazin inverse if $\mathop {\rm sgn} \widetilde {A}^{\rm d}=\mathop {\rm sgn} A^{\rm d}$ for any $\widetilde {A}\in \mathcal {Q}(A)$, where $A^{\rm d}$ denotes the Drazin inverse of $A$. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse.
The sign pattern of a real matrix $A$, denoted by $\mathop {\rm sgn} A$, is the $(+,-,0)$-matrix obtained from $A$ by replacing each entry by its sign. Let $\mathcal {Q}(A)$ denote the set of all real matrices $B$ such that $\mathop {\rm sgn} B=\mathop {\rm sgn} A$. For a square real matrix $A$, the Drazin inverse of $A$ is the unique real matrix $X$ such that $A^{k+1}X=A^k$, $XAX=X$ and $AX=XA$, where $k$ is the Drazin index of $A$. We say that $A$ has signed Drazin inverse if $\mathop {\rm sgn} \widetilde {A}^{\rm d}=\mathop {\rm sgn} A^{\rm d}$ for any $\widetilde {A}\in \mathcal {Q}(A)$, where $A^{\rm d}$ denotes the Drazin inverse of $A$. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse.
DOI :
10.1007/s10587-014-0141-6
Classification :
15A09, 15B35
Keywords: sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix
Keywords: sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix
@article{10_1007_s10587_014_0141_6,
author = {Bu, Changjiang and Wang, Wenzhe and Zhou, Jiang and Sun, Lizhu},
title = {On block triangular matrices with signed {Drazin} inverse},
journal = {Czechoslovak Mathematical Journal},
pages = {883--892},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0141-6},
mrnumber = {3304786},
zbl = {06433702},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0141-6/}
}
TY - JOUR AU - Bu, Changjiang AU - Wang, Wenzhe AU - Zhou, Jiang AU - Sun, Lizhu TI - On block triangular matrices with signed Drazin inverse JO - Czechoslovak Mathematical Journal PY - 2014 SP - 883 EP - 892 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0141-6/ DO - 10.1007/s10587-014-0141-6 LA - en ID - 10_1007_s10587_014_0141_6 ER -
%0 Journal Article %A Bu, Changjiang %A Wang, Wenzhe %A Zhou, Jiang %A Sun, Lizhu %T On block triangular matrices with signed Drazin inverse %J Czechoslovak Mathematical Journal %D 2014 %P 883-892 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0141-6/ %R 10.1007/s10587-014-0141-6 %G en %F 10_1007_s10587_014_0141_6
Bu, Changjiang; Wang, Wenzhe; Zhou, Jiang; Sun, Lizhu. On block triangular matrices with signed Drazin inverse. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 883-892. doi: 10.1007/s10587-014-0141-6
Cité par Sources :